. Benjamin DEVEZE
JEPITAL Matthieu FOUQUIN
14-16 rue Voltaire p ROMggiN 2005
94270 Kremlin Bicétre

QUELQUES ALGORITHMES DES SCIENCES
COGNITIVES

Janvier 2004

Responsable de spécialité SCIA : M. Akli Adjaoute

Table des matiéeres

Table des matieres

1 Introduction 1
2 Systemes a base de connaissances & Techniques d’implémentation de RETE 2
21 Intérét. 2
2.2 Systémes abasede connaissances L 2
221 Raisonnementparcas 2

222 Systtmesexperts L 4

23 Implémentationde RETE. 7
231 Rappels 7

2.3.2 Techniques d'implémentation 8

2.3.3 Variantes & Optimisationsde RETE 9

3 Algorithmes des Blackboards 11
3.1 Présentation des Blackboards o L o oL 11
3.2 Modele HEARSAY-II (HSII) 11
3.2.1 Stratégie standard pour la résolution de probleme standard 11

3.2.2 Auto-activation des sources de connaissances 11

3.23 Agenda-based control mechanism 12

3.24 Controle du systéme BlackBoard 12

3.2.5 Meécanismes de controle supplémentaires dans le modele Hearsay-1I 13

3.3 Autres Architecturesdecontréleo o Lo oL L 14
3.3.1 HASP/SIAP : Controle basé surles événements. 14

3.3.2 CRYSALIS: Controle hiérarchique 14

3.3.3 Architecture Blackboard Goal-Directed 15

334 BBl e 15

3.3.5 Modele basé sur une planification incrémentale 15

3.3.6 Larchitecture channelized, parameterized 15

3.3.7 ATOME: Contrdle hybride multiple 16

3.3.8 CASSANDRA : Controle Blackboard distribué 16

3.3.9 RESUN:: Planification pour résoudre les sources d’incertitude 16

4 Algorithmes de programmation par contraintes 17
4.1 Présentationetnotations Lo o o 17
42 Algorithmes 17
421 Commentaires liminaires 17

422 Génere et Teste - Generate and Test (GT) 18

42.3 Simple retour arriere - Backtracking (BT) 18

424 Anticipation par noeud - Node Consistency (NC) 19

425 Anticipation par arc - Arc Consistency (AC) 20

426 PathConsistency (PC) 22

427 Combinaison de recherche systématique et techniques de consistance 23

428 Améliorationsdelarecherche. 0 0. 24

429 Ordredesvaleurs. 25

Quelques algorithmes des sciences cognitives Page i

PN
EPITA Table des matiéres

4210 Résolutiondes MCSP 25

5 Algorithmes des systemes multi-agents 27
5.1 Présentation des agents et des systémes multi-agents 27
52 Algorithmesdecontrole 27
521 AgentsRéactifs 27

522 Agentsdélibératifs L oo 28

523 AgentsBDI 28

5.3 Algorithmes de recherche dans les systemesaagents 29
54 Lacommunicationentreagents L L oL 29
541 KQML 29

54.2 ACL-FIPA 29

55 Lanégociation L 29
551 Présentation 29

552 Négociationauxencheres 30

5.5.3 Allocation des taches par réseau contractuel 31

5.5.4 Allocation des taches par redistribution 31

5,55 Négociation heuristique 32

5.5.6 Négociation par argumentation00, 32

6 Algorithmes des réseaux de neurones 33
6.1 Présentation des réseaux deneurones oL 33
6.2 Lesréseaux feed-forward 33
6.2.1 Perceptron simple (ou monocouche) L L. 33

6.2.2 Rétro-Propagation (back propagation) 34

6.2.3 Adaline 34

6.2.4 Leperceptron multicouches L. 34

6.2.5 Analyse de discriminants linéaires 34

6.3 Lesréseauxfeed-back. 35
6.3.1 Apprentissage de Boltzmann 00 0 L 35

6.3.2 Cartes Auto-Organisatrices de Kohonen (SOM) 35

6.3.3 LesréseauxdeHopfield 35

6.3.4 Le Réseau de Anderson (BraininaBox) 35

6.3.5 Les modeles de Résonance Adaptative. 36

6.4 Les algorithmes d’apprentissage par compétition 36
6.4.1 Winner Take AIl (WTA) 36

6.42 LVQ . . 36

6.43 Les ART e 36

644 Réseauafonctionradiale 37

7 Forward Algorithms 38
7.1 Algorithmes forward standards de recherche 38
7.1.1 Recherche en largeur d’abord (Breadth First) 38

7.1.2 Recherche en profondeur d’abord (Depth First) 38

7.1.3 Recherche limitée en profondeur d’abord (Depth First) 39

714 AlgorithmedeDijkstra. o 39

715 A*(ASStar) 40

7.1.6 Recherche du meilleur d’abord (Best First) 40

7.1.7 Profondeur itératif (Iterative Deepening) 40

7.2 Algorithmes forward dérivés du backtracking 41
721 LeForward Checking 41

7.2.2 Algorithmes hybrides du Forward Checking (FC-BJ et FC-CBJ) 41

Quelques algorithmes des sciences cognitives Page ii

PN
EPITA Table des matiéres

8 Backward Algorithms 43
8.1 Simple Backtracking (BT) 43
8.2 Backjumping (backtracking intelligent) 43
8.3 Conflict-Directed Backjumping (CB]) 44
8.4 Graph-Based Backjumping (GBJ) 44
85 Backmarking 45
8.6 Algorithmes hybrides du Backmarking (BM-BJ, BM-CBJ], BM-GBJ, BM]2, BM-CBJ...) . 46

9 Algorithmes d’élagage 47
9.1 Algorithmes delathéoriedesjeux 47
9.2 A* e 51
9.3 Programmation linéaire L L L L 52

9.3.1 LalgorithmeduSimplexe 52

Bibliographie 53

Quelques algorithmes des sciences cognitives Page iii

Liste des Algorithmes

Liste des Algorithmes

1 Algorithme duchainageavant 6
2 Algorithme du chatnagemixte 7
3 Boucle de contrdle basique dumodele HSIT 12
4 Boucle de contrdle pour lemodele HASP. 14
5 Boucle de contrdle pour I'architecture Goal-Directed 15
6 Génereet Teste (GT) e 18
7 Simple retour arriere - Backtracking (BT) 19
8 Anticipation par noeud - Node Consistency (NC) 20
9 Anticipation par arc - Arc Consistency (AC) o L. 20
10 ACTL . . e 21
11 AC3 . 21
12 Cycledebase d'unagentréactif: 27
13 Cycle de base d'un agent délibératif: 28
14 Algorithme de controled’agent BDI 28
15 Algorithme d’apprentissage du Perceptron 33
16 Algorithme de Rétro-Propagation, 34
17 Algorithme de recherche en largeurd’abord 38
18 Algorithme de recherche en profondeur d’abord 39
19 Algorithme de recherche limité en profondeur 39
20 AlgorithmedeDijkstra L Lo 40
21 Algorithme du Forward Checking 41
22 Algorithme du Backjumping o oo Lo 43
23 Algorithme du Conflict-Directed Backjumping 44
24 Algorithme du Graph-Based Backjumping 45
25 Algorithme du Backmarking Lo L oo 46
26 MInimaX e 49
27 NegMAaX e 49
28 AlphaBeta 50
Quelques algorithmes des sciences cognitives Page iv

EPITRA Chapitre 1. Introduction

Chapitre 1

Introduction

Ce rapport a pour but de présenter quelques algorithmes fondamentaux utilisés dans le domaine
des sciences cognitives. Il ne prétend bien-stir pas a 1’exhaustivité mais, a pour vocation de dresser
un apercu général de I’état de I’art en matiere algorithimique, dans les différents domaines traités. Le
lecteur pourra trouver la plupart des algorithmes abordés dans le corps du rapport. Notons également
que nous avons volontairement choisi de ne pas écarter certains algorithmes naifs et non exploitables
par I'industrie afin de bien montrer les améliorations progressives qui ont eu cours. Notons d’ailleurs,
qu’en général, la présentation des algorithmes vise a en faire ressortir 1’évolution chronologique. Nous
nous sommes souvent un peu plus étendu que ne 'exigeait le sujet, nous considérons en effet que
certains algorithmes méritaient d’étre développés et qu'une étude un peu plus précise ne pouvait
étre que bénéfique pour une consultation ultérieure de ce document.

Quelques algorithmes des sciences cognitives Page 1

JEPITA Chapitre 2. Systémes a base de connaissances & Techniques d’implémentation de RETE

Chapitre 2

Systemes a base de connaissances &
Techniques d’'implémentation de RETE

2.1 Intérét

Le monde des entreprises fait face actuellement a un important probleme de gestion de son savoir,
de son savoir-faire et de ses compétences. Ce probleme se caractérise de plusieurs manieres :

— Perte de savoir et de savoir-faire antérieur

— Méconnaissance des travaux effectués ailleurs

— Non communication entre les services

— Localisation monopolistique des connaissances et de I’expertise...

Constituer une mémoire vivante et productive de l'entreprise, faire vivre une base de connais-
sances reposent donc sur les trois themes principaux suivants :

— la gestion des experts et des expertises

— le retour d’expériences

— le transfert de connaissances et d’informations dans ’entreprise

Les systemes a base de connaissances permettent de recueillir et d’exploiter le savoir acquis au
cours des années, cette centralisation du savoir permet de répondre efficacement aux problématiques
pouvant se présenter.

2.2 Systémes a base de connaissances

Nous nous intéresserons ici successivement au raisonnement par cas et aux systemes experts, qui
font tous les deux parties des systemes a base de connaissances, puisqu’ils exploitent tous les deux
des connaissances acquises et stockées dans une base.

2.2.1 Raisonnement par cas

De maniere générale, le raisonnement par cas est une approche de résolution de problemes basée
sur la réutilisation par analogie d’expériences passées appelées cas. Un cas représente notamment
un probleme et la solution qui a été appliquée (ou une méthode permettant de la générer). Le
raisonnement se décompose habituellement en quatre phases principales :

— phase de recherche dont le but est de rechercher des cas ayant des similarités avec le probleme

courant

— phase de réutilisation permettant de construire une solution au probleme courant en se basant

sur les cas identifiés dans la phase précédente

— phase de révision de la solution qui permet de 'affiner grace a son évaluation

Quelques algorithmes des sciences cognitives Page 2

JEPITA Chapitre 2. Systémes a base de connaissances & Techniques d’implémentation de RETE

— phase d’apprentissage chargée de mettre a jour les éléments du raisonnement en prenant en
compte l'expérience qui vient d’étre réalisée, et qui pourra ainsi étre utilisée pour les raisonne-
ments futurs.

Ainsi, un cas représente une expérience passée dont l'enseignement peut étre utile lorsqu'un
nouveau probleme se présente. Généralement, un cas est indexé pour permettre de le retrouver
suivant certaines caractéristiques pertinentes et discriminantes. Ces caractéristiques, aussi appelées
indices, déterminent dans quelle situation (ou contexte) le cas peut étre de nouveau réutilisé. La
problématique de la phase de recherche est donc de permettre d’identifier un certain nombre de cas
ayant des indices similaires au probleme courant : il est en effet peu probable de retrouver un cas
correspondant exactement au probleme courant. Un systeme de raisonnement par cas doit permettre
I'expression des indices pour les différents cas, et doit disposer de structures d’indexation ou index
offrant une recherche efficace tout en utilisant des connaissances du domaine et/ou des connaissances
induites a partir de son expérience. Dans ce sens, 1’objectif de la phase de recherche dépasse les
approches classiques des bases de données méme si des techniques issues de ce domaine sont parfois
utilisées. Voyons un peu plus en détail comment se déroulent ces processus.

Processus

La recherche

Cette phase permet de déterminer les cas de la base qui sont les plus similaires au probleme a résoudre.
La procédure de recherche est habituellement implémentée par une sélection des plus proches voi-
sins (k-nearest-neighbors) ou par la construction d’une structure de partitionnement obtenue par
induction. L’approche des plus proches voisins utilise des métriques de similarité pour mesurer la
correspondance entre chaque cas et le nouveau probleme a résoudre. Ces métriques peuvent varier
d’un systéme a l'autre et peuvent étre pondérées selon le probleme a résoudre, ceci confére plus de
flexibilité au systeme. L'approche par induction génere un arbre qui répartit les cas selon différents
attributs et qui permet de guider le processus de recherche.

L’adaptation

Suite a la sélection de cas lors de la phase de recherche, le systeme CBR aide 1'usager a modifier
et a réutiliser les solutions de ces cas pour résoudre son probleme courant. En général, on retrouve
deux approches pour 'adaptation de cas. Par I'approche transformationnelle (ou structurelle), on
obtient une nouvelle solution en modifiant des solutions antécédentes et en les réorientant afin de
satisfaire le nouveau probléme. Par 'approche générative (ou dérivationnelle), on garde, pour chaque
cas passé, une trace des étapes qui ont permis de générer la solution. Pour un nouveau probléme,
une nouvelle solution est générée en appliquant 1'une de ces suites d’étapes. Certains travaux visent
également a unifier ces différentes approches d’adaptation. Peu de systemes CBR font de I’adaptation
completement automatique. Pour la plupart des systemes, une intervention humaine est nécessaire
pour générer partiellement ou completement une solution a partir d’exemples. Le degré d’interven-
tion humaine dépend des bénéfices en terme de qualité de solution que peut apporter I'automatisation
de la phase d’adaptation.

La maintenance

Durant le cycle de vie d'un systeme CBR, les concepteurs doivent préconiser certaines stratégies
pour intégrer de nouvelles solutions dans la base de cas et pour modifier les structures du systeme
CBR pour en optimiser les performances. Une stratégie simple est d'insérer tout nouveau cas dans la
base. Mais d’autres stratégies visent a apporter des modifications a la structuration de la base de cas
(e.g. indexation) pour en faciliter I'exploitation. On peut également altérer les cas en modifiant leurs
attributs et leur importance relative.

La construction
Ce processus, en amont des activités de résolution de problémes du systéme CBR, soutend la struc-
turation initiale de la base de cas et des autres connaissances du systeme a partir de différentes

Quelques algorithmes des sciences cognitives Page 3

JEPITA Chapitre 2. Systémes a base de connaissances & Techniques d’implémentation de RETE

ressources tels des documents, bases de données ou transcriptions d’interviews avec des praticiens
du domaine. Ce processus, souvent effectué manuellement par le concepteur du systeme, se préte
moins bien a ’automatisation car il nécessite une connaissance du cadre applicatif pour guider, entre
autre, la sélection du vocabulaire d'indexation et la définition des métriques de similarités.

La connaissance

Les différentes connaissances utilisées par un systeme CBR sont regroupées en quatre catégories
(« knowledge containers ») :

— vocabulaire d'indexation : un ensemble d’attributs ou de traits (« features ») qui caractérisent la
description de problémes et de solutions du domaine. Ces attributs sont utilisés pour construire
la base de cas et jouent un réle important lors de la phase de recherche.

— base de cas : I’ensemble des expériences structurées qui seront exploitées par les phases de
recherche, d’adaptation et de maintenance.

— mesures de similarité : des fonctions pour évaluer la similarité entre deux ou plusieurs cas. Ces
mesures sont définies en fonction des traits et sont utilisées pour la recherche dans la base de
cas.

— connaissances d’adaptation : des heuristiques du domaine, habituellement sous forme de regles,
permettant de modifier les solutions et d’évaluer leur applicabilité a de nouvelles situations.

2.2.2 Systémes experts

Rappelons briévement le principe et I’organisation d'un systeme expert, cela étant nécessaire a la
bonne compréhension des algorithmes utilisés dans le domaine.

Un systeme expert est un logiciel qui reproduit le comportement d"un expert humain accomplis-
sant une tache intellectuelle dans un domaine précis. On peut souligner les points suivants :

— les systemes experts sont généralement congus pour résoudre des problemes de classification ou
de décision (diagnostic médical, prescription thérapeutique, régulation d’échanges boursiers,
)

— les systemes experts sont des outils de I'intelligence artificielle, c’est-a-dire qu’on ne les utilise
que lorsqu’aucune méthode algorithmique exacte n’est disponible ou praticable

— un systéme expert n’est concevable que pour les domaines dans lesquels il existe des experts
humains. Un expert est quelqu'un qui connait un domaine et qui est plus ou moins capable de
transmettre ce qu’il sait

Un systeme expert est composé de deux parties indépendantes :

— une base de connaissances elle-méme composée d"une base de regles qui modélise la connais-
sance du domaine considéré et d’une base de faits qui contient les informations concernant le
cas que l'on est en train de traiter

— un moteur d’inférences capable de raisonner a partir des informations contenues dans la base
de connaissance, de faire des déductions, etc.

Le role du cogniticien est de soutirer leurs connaissances aux experts du domaine et de traduire
ces connaissances dans un formalisme se prétant a un traitement automatique, c’est-a-dire en regles.
Ces deux taches sont aussi délicates 'une que l'autre. En effet, un expert est la plupart du temps
inconscient de la majeure partie de son savoir; et s’il arrive a en exprimer une partie, c’est souvent
sous une forme qui ne se laisse pas facilement formaliser.

L'indépendance entre la base de connaissances et le moteur d’inférences est un élément essen-
tiel des systemes experts. Elle permet une représentation des connaissances sous forme purement
déclarative, c’est-a-dire sans lien avec la maniére dont ces connaissances sont utilisées. L’avantage de
ce type d’architecture est qu'il est possible de faire évoluer les connaissances du systeme sans avoir a

Quelques algorithmes des sciences cognitives Page 4

JEPITA Chapitre 2. Systémes a base de connaissances & Techniques d’implémentation de RETE

agir sur le mécanisme de raisonnement.

Dans la réalité, les choses se passent de maniere un peu moins idéale et il est souvent nécessaire
d’organiser la base de connaissances, de réfléchir sur les stratégies d’utilisation des regles, etc.

Le systeme expert est souvent complété par des interfaces plus ou moins riches permettant un
dialogue avec les utilisateurs, 'idéal étant une interface en langage naturel.

La représentation des connaissances

Les faits peuvent prendre des formes plus ou moins complexes. Un systéme expert qui n"utilise
que des faits booléens est dit d’ordre 0. Un systéme expert qui utilise des faits symboliques ou réels,
sans utiliser de variables, est d’ordre 0+. Un systéme utilisant toute la puissance de la logique du
premier ordre est d’ordre 1.

Une regle est de la forme Si conjonction de conditions alors conclusion. Une base de regles est un
ensemble de regles et sa signification logique est la conjonction de la signification logique de chacune
des régles.

Un des plus grand problémes que rencontre le cogniticien lorsqu’il tente de formaliser le savoir
d’un expert, c’est que celui-ci est capable de raisonner sur des connaissances incertaines et qu’on
ne dispose que de trés peu d’outils pour rendre compte de cette capacité. C’est pourquoi des re-
cherches sont en cours pour intégrer la logique floue, les logiques modales et non monotones dans
la représentation des connaissances, ceci permettra sans doute de se rapprocher un peu plus de nos
modes de raisonnement.

Le moteur d’inférence

Un moteur d’inférences est un mécanisme qui permet d’inférer des connaissances nouvelles a
partir de la base de connaissances du systeme, composée de la base des faits et de la base de regles.
Le moteur d’inférence va enchainer les regles c’est a dire qu’il va effectuer un chainage. On distingue
essentiellement trois modes principaux de fonctionnement des moteurs d’inférence : le chainage
avant, le chalnage arriére, et le chainage mixte. On remarquera que les moteurs d’inférence décrits
ci-dessous le sont indépendamment de tout domaine d’application. Cette séparation entre connais-
sance et raisonnement est essentielle pour les systémes experts.

Le chainage avant

Le mécanisme du chainage avant est tres simple. On va analyser chaque fait et on va examiner
toutes les régles ol ce fait apparait en prémisse. Pour les regles déclenchées, on va affecter les
attributs en conclusion des valeurs qui leur correspondent. On dira que les faits ont été propagés. Ces
attributs affectés feront partie du résultat final de I'expertise ; et, en méme temps, ils seront eux-mémes
propagés. On fait cela jusqu’a I'épuisement des faits, et on communique les résultats a 1'utilisateur.
L’algorithme suivant calcule si Fait peut étre déduit ou non de la base de connaissances.

Quelques algorithmes des sciences cognitives Page 5

JEPITA Chapitre 2. Systémes a base de connaissances & Techniques d’implémentation de RETE

Algorithm 1 Algorithme du chainage avant

Ensure: retourne vrai si F peut étre déduit faux sinon
1: function CrHaiNAGEAVANT(BR, BF, F)
2: while F n’est pas dans BF et qu'’il existe dans BR une regle applicable do
choisir une regle applicable R
BR =BR-R
BF = BF U Conclusion(R)
end while
if F appartient a BF then
return vrai
else
10: return faux
11: end if
12: end function

On remarque que l'algorithme précédent n’indique pas comment choisir une régle applicable.
C’est a ce niveau que la métaconnaissance du domaine peut intervenir et permet de définir une
stratégie de choix. Notons également que 1’algorithme se termine toujours.

Cet algorithme présente les inconvénients suivants :

— Déclenche toutes les regles applicables méme si aucun intérét

— Base de faits doit contenir suffisamment de faits initiaux

— En cas d’échec, un seul fait pourrait permettre d’arriver au but, mais pas interactif
— Explosion combinatoire possible

Le chainage arriere

Le mécanisme de chainage arriére consiste a partir du fait que 1'on souhaite établir, a rechercher
toutes les regles qui concluent sur ce fait, a établir la liste des faits qu’il suffit de prouver pour qu’elles
puissent se déclencher puis a appliquer récursivement le méme mécanisme aux faits contenus dans
ces listes.

L’exécution de l'algorithme de chainage arriere peut étre décrit par un arbre dont les noeuds sont
étiquetés soit par un fait, soit par un des deux mots et, ou. On parle d’arbre et-ou.

Si les faits déja examinés ne peuvent pas étre mémorisés (par exemple parce qu’ils sont trop
nombreux), I’algorithme de chainage arriere peut boucler.

On peut enrichir 1’algorithme de chainage arriere en tenant compte du caractére demandable ou
non d’un fait. Dans ce cas, lorsqu’un fait demandable n’a pas encore été établi, le systeme le demandera
a l'utilisateur avant d’essayer de le déduire d’autres faits connus. Mais pour que ce mécanisme soit
efficace (ce qui implique entre autres qu’il n’agace pas 1'utilisateur en posant des questions stupides),
il faut que le moteur d’inférences soit capable de déterminer quelles sont les questions pertinentes.
Et ce probleme est loin d’étre simple. Ce systéeme de questions posées a 1'utilisateur rend le processus
intéractif et réduit I’arbre de recherches.

Le chainage mixte
L’algorithme de chainage mixte combine, comme son nom l'indique, les algorithmes de chainage
avant et de chainage arriere. Son principe est le suivant :

Quelques algorithmes des sciences cognitives Page 6

JEPITA Chapitre 2. Systémes a base de connaissances & Techniques d’implémentation de RETE

Algorithm 2 Algorithme du chainage mixte

1: function CHAINAGEMIXTE(F (a déduire))

2 while F n’est pas déduit mais peut encore 1'étre do

3: Saturer la base de faits par chainage AVANT

4 Chercher quels sont les faits encore éventuellement déductibles

5 Déterminer une question pertinente a poser a l'utilisateur et ajouter sa réponse a la base
de faits

6: end while

7: end function

Résolution des conflits

Le choix de la ou les regles qui doivent effectivement étre déclenchées est une source de conflits.
Les stratégies de résolution de ces conflits sont variées, citons notamment :

— déclenchement de la regle dont la partie prémisse est la plus détaillée (conclusions plus précises)

— regle utilisant les informations les plus récemment acquises ou déduites

— regles amenant le plus grand nombre de conclusions

— regles fonction de 'intérét des conclusions qu’elles apportent

2.3 Implémentation de RETE

2.3.1 Rappels
Présentation

Comme nous 'avons vu, les algorithmes classiques de chainage avant présente une complexité
de calcul trop importante pour étre applicables a des systémes d’envergure. L’algorithme de RETE
(qui signifie réseau en latin) est un algorithme de chainage avant qui exploite intelligemment les
particularités des systémes a base de regles a savoir :

— la ressemblance structurelle : de nombreuses prémisses de regles ont des clauses (pattern) en

commun et donc le nombre de tests ainsi que la mémoire utilisée peuvent étre réduits.

— laredondance temporelle : entre deux cycles du moteur d’inférence, la mémoire de travail differe

peu, il est donc avantageux de mémoriser les états antérieurs plutot que de tout recalculer

Principe

L’algorithme de RETE compile la partie condition des régles sous forme d"un réseau de propa-
gation différentielle. Les noeuds du réseau mémorisent et maintiennent par calcul différentiel des
informations sur les résultats des tests. Le réseau prend en entrée les changements affectant la base
de faits et calcule en sortie les changements correspondants de 1’ensemble des conflits, qui n’est autre
que l'ensemble des regles déclenchables a un instant ti.e. les régles qui ont été matchées par les faits.

Arbre de discrimination

Le réseau est partagé en deux parties distinctes, la premiére partie du réseau, appelée arbre de dis-
crimination, effectue les tests de sélection sur les faits contenus dans la base de faits. La racine de
I'arbre de discrimination est aussi le point d’entrée du réseau. L'arbre a autant de feuilles qu’il y a de
littéraux distincts dans les parties conditions des régles, ces feuilles sont appelées noeuds alpha. Etant
donnés un ensemble de régles, 1 un littéral figurant dans la partie condition d’une des regles de cet
ensemble, et BF un état de la base de faits, le noeud alpha associé a 1 calcule I'ensemble des instances
du littéral 1 dans BE. Le résultat du calcul d’un noeud alpha est mémorisé dans une mémoire (dite
mémoire alpha). Une mémoire alpha contient donc un ensemble de faits de BF. L’arbre de discrimina-
tion contient aussi des noeuds internes qui permettent de partager des calculs communs a plusieurs

Quelques algorithmes des sciences cognitives Page 7

JEPITA Chapitre 2. Systémes a base de connaissances & Techniques d’implémentation de RETE

noeuds alpha.

Réseau de jointure

La deuxiéme partie du réseau (ou réseau de jointure) contient des noeuds qui effectuent des tests
de jointuire entre les littéraux d"une méme régle. Chaque noeud béta est associé a une mémoire dite
mémoire béta dans laquelle est mémorisé ’ensemble des instances partielles calculées dans le noeud.
Le réseau a autant de noeuds terminaux, aussi appelés noeuds régles, qu’il y a de régles dans la base
de régles. Chaque noeud régle calcule I'ensemble des instances d’une réegle.

Exécution des regles

L’algorithme d’exécution des regles calcule I'ensemble de conflits dans I'état initial de la base de
faits. Puis il maintient cet ensemble de cycle en cycle en utilisant le réseau de propagation. Le
calcul des changements de I’ensemble de conflits est entremélé avec I’exécution des actions. A chaque
changement opéré sur labase de faits, le systéme génere un message. La procédure dite de propagation
est exécutée des qu'un message est généré. Cette procédure prend en entrée le réseau de propagation
et un message; elle calcule les modifications a apporter aux données mémorisées a la suite du
changement survenu dans la base de faits. Initialement, les mémoires locales du réseau sont vides
ainsi que 'ensemble de conflits. Au cours de la premiére phase, un message est généré et propagé
pour chaque fait de la base de faits initiale. Le résultat de cette phase est le calcul de I'ensemble de
conflits dans la base de faits initiale et la mémorisation des instances partielles dans les mémoires
locales du réseau. Ensuite, 1’algorithme exécute un cycle comportant deux phases : (i) choisir une
instance de regle dans 1’ensemble de conflits, (ii) exécuter chaque action spécifié par 1'instance choisie
en (i), générer le message correspondant et le propager. L'exécution s’arréte lorsque 'ensemble de
conflits est vide. La complexité de la procédure de propagation est déterminante car cette procédure
exécute la plus grande part du travail effectué par 1’algorithme.

2.3.2 Techniques d’'implémentation

Nous ne donnerons pas de pseudo-code pour 'algorithme de RETE ni pour TREAT car un code a
déja été vu en cours, d’autre part un code plus détaillé serait trop volumineux pour ce rapport. Nous
réservons donc la partie plus technique du codage de RETE a une prochaine échéance puisque nous
avons a I'implémenter.

Syntaxe des régles et des faits

Il convient tout d’abord de se fixer une syntaxe et une grammaire pour 1’écriture des regles et des
faits. Il faut déterminer si le moteur d’inférence pourra supporter les expressions arithmétiques, les
négations, les variables, les littéraux d’arité quelconque... Dans la littérature on retrouve parfois des
exemples d'implémentation ot1 les regles sont sous forme de triplets de type identifiant attribut valeur,
ce qui simplifie I'implémentation et n’est pas restrictif pour le systeme, puisque les autres formes
peuvent étre converties dans ce format. Il est toutefois préférable d’offrir la possibilité d’utiliser des
n-uplets qui sont plus souples d’utilisation et qui restreignent le nombre de regles du systéme.

Implémentation du réseau alpha

On construit le réseau comme suit. Pour chaque condition, posons T1, ..., Tk ses constantes, on part
de la racine et on construit un chemin de k noeuds correspondant aux constantes. En construisant ce
chemin, on partage les noeuds existants quand cela est possible. Enfin, la mémoire alpha sera la sortie
dunoeud Tk. Il est possible de créer des noeuds internes qui portent sur la longueur des littéraux afin
d’accélérer les recherches. Chaque noeud interne a une structure simple, il comprend la valeur de la
constante a tester, sa position, une liste de noeuds fils. Evidemment cette solution n’est pas parfaite,
car le systeme peut ralentir lorsqu'un noeud a beaucoup de fils, c’est pourquoi on peut mettre en
place des tables de hachage pour se brancher tout de suite sur le bon fils. Notons également que si

Quelques algorithmes des sciences cognitives Page 8

JEPITA Chapitre 2. Systémes a base de connaissances & Techniques d’implémentation de RETE

I'on adopte une représentation des regles en k-uplets il est possible de mettre en place des tables de
hachage exhaustives.

Implémentation des noeuds mémoires

Rappelons que les mémoires alpha stockent des ensembles de faits et que les noeuds bétas stockent
des ensembles de tokens, chaque token représentant une séquence de faits, chaque token correspond
alors a un match partiel qui satisfait les k premieres conditions d’une regle. Il y a plusieurs fagon
d’implémenter les noeuds mémoires selon la fagcon de représenter les ensembles et les tokens. Pour
stocker les ensembles on peut utiliser de simples listes, on peut gagner en performance en indexant
les éléments dans des tables de hachage ou en utilisant des arbres. Pour ce qui est de la représentation
des tokens, deux solutions principales sont envisageables, les tableaux et les listes. Les tableaux
présentent des acces en temps constant mais ils nécessiteront plus de mémoire.

Un mémoire alpha sera donc représentée par une structure contenant une liste de faits et une liste
de fils. Un token aura un pointeur vers son ascendant qui contient les k - 1 faits précédents et le k
ieme fait. Une mémoire béta sera une structure contenant une liste de tokens et une liste de fils.

Implémentation des jointures du réseau béta

Une jointure peut étre activée par la droite lors de 'ajout d"un fait dans un noeud alpha ou bien
par la gauche lorsqu’un token est ajouté a un noeud béta. Une jointure doit donc contenir un pointeur
vers les deux mémoires alpha et béta qui la précedent, une liste de fils, et une liste de tests a effectuer.
I convient ensuite d’écrire les procédures d’activation correspondantes. Notons que pour éviter les
doublons de tokens il convient d’activer d’abord les descendants avant les ancétres.

2.3.3 Variantes & Optimisations de RETE

Il existe un grand nombre de variantes et d’optimisations diverses pour l'algorithme de RETE.
Certains favorisent la mémoire utilisée, d’autres le temps d’exécution et il convient donc d’adapter I'al-
gorithme a ses besoins. Il est évident que 1’algorithme doit étre congu différemment pour un systeme
comptant plus de 100 000 regles que pour un systeme qui contiendra moins de 100 regles. Il faut
également distinguer les systémes qui doivent supporter les négations, les négations de conjonctions,
les expressions arithmétiques, la suppression et I'ajout de régles, la modification de faits existants...
Bref il existe autant de variantes que de cas d’utilisations.

Quelques variantes

— Scaffolding : utile quand les mémes faits sont ajoutés et supprimés de fagon répétitive, ils sont
marqués actifs et inactifs plutot que réellement supprimés

— dans les systemes utilisant une forme de résolution des conflits, il est possible d’utiliser une
version paresseuse. L'idée principale est de limiter le filtrage afin de ne pas construire des
instances de régles qui ne seront jamais exécutées

— Collection Rete est un moyen de réduire le cotit des jointures lorsque les mémoires de travail sont
de tailles importantes. L'idée est de structurer le contenu des noeuds béta comme des ensembles
de collections de tokens plutoét que comme des ensembles de tokens individuels

— Il est possible d’ajouter un algorithme de cohérence d’arc a Rete afin d’élaguer les combinaisons
possibles

— Rete UL est un moyen de conserver un temps d’exécution raisonnable quelque soit le nombre
de régles

— etc

Quelques algorithmes des sciences cognitives Page 9

-\
JEPITA Chapitre 2. Systémes a base de connaissances & Techniques d’implémentation de RETE

TREAT

Nous ne nous étendrons pas sur 1’algorithme de TREAT qui est une alternative tres proche de
RETE. TREAT n’utilise que l’arbre de discrimination et les noeuds régles, il n"utilise pas le réseau de
jointure de RETE. De ce fait, la suppression d"un fait est rendu plus simple dans TREAT car il suffit de
supprimer de I'ensemble des conflits tous les tokens faisant intervenir le fait & supprimer. Par contre
I'insertion fait intervenir plus de calculs.

Quelques algorithmes des sciences cognitives Page 10

4N
HEPITA Chapitre 3. Algorithmes des Blackboards

Chapitre 3

Algorithmes des Blackboards

3.1 Présentation des Blackboards

Les systemes blackboards (tableau noir) ont été développés dans les années 1970 pour résoudre
des problemes complexes d’interprétation du signal. Depuis, I’approche des blackboards a été retenue
pour aborder les problemes difficiles et mal structurés, et ce dans des applications pour de nombreux
secteurs.

Les blackboards constituent une technique multi-agents de résolution de probléme. Le probleme
est décrit sur un tableau virtuel et chaque agent, en fonction de sa spécialité, en résout une partie en
posant sur le tableau une solution ou un nouveau sous-probléme.

Le systéme blackboard est fondé sur une recherche de solutions par I'intermédiaire d"une base de
faits partagée.

Une architecture blackboard est constituée de 3 composants majeurs :

— Une mémoire organisée hiérarchiquement ou une base de données appelée blackboard dans
laquelle les solutions sont sauvegardées

— Une collection de sources de connaissance qui génere des solutions sur le blackboard en utilisant
systémes experts, réseaux de neurones, analyse numérique...

— Un module de controéle séparé qui passe en revue les sources de la connaissance et choisit la
plus appropriée

3.2 Modéle HEARSAY-II (HSII)

3.2.1 Stratégie standard pour la résolution de probléme standard

La stratégie standard pour blackboard de résolution de probleme se réfere souvent a un « hy-
pothesis and test »incrémental (ou évidence aggrégation). Cela implique de faire I'hypothése d"une
solution éventuellement partielle basée sur des données incompletes et d’essayer de la vérifier sur
des données supplémentaires pour la valider.

3.2.2 Auto-activation des sources de connaissances

Un aspect important du modele HERSAY-II qui permet 1'indépendance des sources de connais-
sance est que ces dernieres procedent par auto-activation. Chaque source de connaissance posséde un
format de précondition-action dans lequel la précondition lui permet de déterminer quand l'action
est applicable a partir de I’état actuel du blackboard.

Quelques algorithmes des sciences cognitives Page 11

4N
HEPITA Chapitre 3. Algorithmes des Blackboards

3.2.3 Agenda-based control mechanism

Comme les sources de connaissance dans le modele HSII sont a la fois indépendantes et auto-
activables, iln’y a, a priori, pas besoin de mécanisme de controle additionnel : une source de connais-
sance pourrait s’exécuter lorsqu’elle a déduit qu’elle était activable. Malgré cela, cette approche a
deux sérieux probléme :

— l'exécution des sources de connaissance doit étre séquencée

— Sans contrdle, on se retrouve rapidement dans un probleme d’explosion combinatoire

Pour résoudre ce probléme, le modele HSII utilise un mécanisme de controle d’agenda. Toutes les
actions possibles sont placées dans un agenda et a chaque cycle celui qui possede 1'évaluation la plus
haute est choisi pour I'exécution.

Algorithm 3 Boucle de contrdle basique du modele HSII

1: repeat

2 Identification des sources de connaissance a déclencher

3 Vérification des préconditions des sources de connaissances a déclencher

4: Mise a jour de 'agenda avec les instances représentant les sources de connaissance activées
5 Evaluation des instances et selection des KSI pour 'execution

6: Execution des KSI

7: until les criteres de terminaison sont vérifiés

3.2.4 Controle du systeme BlackBoard
Contréle Goal-Directed

Le controle Goal-Directed se référe a un style spécifique de raisonnement de controle qui implique
une réduction de probleme (détermination de sous-objectif, backchaining des préconditions-actions,
et planification). La détermination de sous-objectifs implique la réduction des buts abstraits de haut
niveau en des buts de bas niveaux plus détaillés qui peuvent étre résolus directement. Le backchaining
des préconditions-actions nécessite d’identifier les actions permettant d’autres actions nécessaires
pour satisfaire un objectif. Et la planification permet de rester concentrer sur les objectifs a plus
long-terme intégrant les actions appropriées ou les éliminant, ce qui peut étre nécessaire lorsque des
actions effectuent des interactions destructives.

Probléme de terminaison

Dans une résolution de probleme blackboard, 'ensemble des buts du systeme se réferent souvent
aux criteres de terminaison (ces criteres doivent étre rencontrés pour que la résolution du probleme
se termine). Quand l’application blackboard est sous contrainte, la résolution du probleme doit
prendre en compte de quelle maniére les hypotheses correspondent a I'ensemble du probleme et
quelle importance elles ont. Trouver une solution correspondant aux contraintes ne représente pas
forcément une solution a l'intégralité du probléme car les heuristiques de stratégies de recherche ne
garantissent pas de trouver d’abord la meilleure réponse.

Les stratégies de résolution de probleme

Si la résolution de probleme de blackboard est considérée comme un processus de satisfaction de
contrainte, I’avantage des stratégies appliquées aux blackboard est d’étre optimisé aux contraintes
et criteres d’arrét du systéeme. Par conséquent, le controle du blackboard est plus souvent utilisé
lorsque les hypotheses se concurrencent, coopérent ou sont indépendantes. Quatre stratégies sont
régulierement utilisées dans ce sens :

Quelques algorithmes des sciences cognitives Page 12

4N
HEPITA Chapitre 3. Algorithmes des Blackboards

Parcours en profondeur d’abord (depth first search)

Cet algorithme est présenté dans la rubrique sur les algorithmes forward. Il est utilisé lorsqu’il y a
une solution partielle avec une grande crédibilité ou quand il n’y a pas d’alternative concurrente avec
une évaluation similaire. Appliqué comme stratégie de résolution de probleme dans les blackboard,
le danger est que s'il est appliqué trop t6t, cela peut prendre trop de temps pour reconnaitre qu'une
branche est inutile. De plus, la valeur ultime d"une recherche dirigée dépend du critere de terminai-
son. Tandis que ce type de recherche peut réduire le cotit pour compléter une solution particuliere, il
n’élimine pas le besoin de considérer les chemins de recherche alternatifs pour satisfaire les objectifs
du systéme. Cependant, la création de solutions potentielles de haut niveau avec des évaluations plus
sérieuses peut toujours réduire le temps de calcul nécessaire pour obtenir les différentes alternatives.

Parcours en largeur d’abord (breadth first search)

Cet algorithme est utilisé lorsqu’une solution partielle a une crédibilité faible ou instable ou lorsqu’il
y a beaucoup de solutions partielles avec le méme taux de crédibilité. L’avantage de cette approche
est que cela permet de construire I'ensemble des contraintes qui peuvent étre utilisées pour construire
une hypothese de haut niveau. De plus, il est parfois nécessaire d’effectuer un parcours complet.

Augmentation de 1’espace de recherche incrémentalement

La particularité de cet algorithme est de permettre de ’appliquer aux contraintes les plus importantes
en limitant 'espace de recherche. Cet algorithme est utilisé dans les architectures HERSAY-II et RE-
SUN a travers l'affectation des hypothéses d’échec d’inférence.

Le diagnostic différentiel

Quand cette méthode est disponible, son utilisation permet de différencier directement les solutions
concurrentes au lieu d’utiliser I’approche générer et tester. Quand 1’hypothése est incertaine due
a 'existence d’hypotheses alternatives et concurrentes, le diagnostic différentiel permet au systeme
d’essayer de trouver des contraintes consistantes avec une seule de ces alternatives. L’avantage d utili-
ser des méthodes directes pour résoudre l'incertitude, est qu’elles peuvent atteindre plus rapidement
des valeurs hautes répondant aux criteres de terminaison que les méthodes indirectes.

3.2.5 Mécanismes de contrdle supplémentaires dans le modele Hearsay-I1
Predict and Verify

Predict and Verify est un mécanisme qui a été implémenté dans le systeme HERSAY-II pour
étendre sa capacité de raisonnement dans la réalisation de buts. Cela permet a 1’architecture HSII de
réaliser des sous-objectifs. Predict effectue des prévisions sur les mots pouvant compléter une phrase.
Verify confirme ou ignore la prédiction en regardant les données.

Large Grained KSs

HSII implémente plusieurs stratégies spécialisées a travers la Large Grained KSs. L'expérience a
montré que le modele avait besoin de stratégies spécifiques a un contexte. Les stratégies de bas niveau
spécialisées traitant de facon uniformisée toutes les données entrées pouvant poser des problemes
de fiabilité. Ainsi, l'utilisation de stratégies de contrdle de haut niveau spécifique au contexte (aussi
appelées stratégies de contrdle sophistiquées) sont utilisées dans les architectures BB1 et RESUN et
permettent une représentation plus explicite de stratégie détaillée.

Stop Terminaison

Ce mécanisme examine les hypotheses alternatives existantes et élague celles qui ne sont pas
capable de produire des réponses intéressantes. Raisonner sur la terminaison requiert une vue globale
de la solution du probleme. Ce mécanisme y parvient en utilisant une base de données de controle.
Cela permet d’'implémenter des stratégies de controle globales et sophistiquées qui déterminent les

Quelques algorithmes des sciences cognitives Page 13

4N
HEPITA Chapitre 3. Algorithmes des Blackboards

hypotheses particulieres qui suivent I'objectif et de supprimer les autres. Ce mécanisme se termine
lorsque toutes les alternatives potentielles ont été retirées.

Generator and Policy KSs

Une des caractéristiques de l'implémentation d"HSII est 1'utilisation de « generator and policy
KSs ». Ce mécanisme est une synthese de « large grained KSs »qui est capable de créer toutes les
explications plausibles pour les hypotheses des différents niveaux. Cependant, au lieu de créer les
hypotheses représentant toutes les explications, ce systéme peut étre contrélé pour ne s’appliquer
qu’a une portion de ces hypotheses. Ce controle est apporté par le « policy KSs »qui spécifie combien
d’hypothese il faut créer et a quel endroit de 'espace de recherche. Les intéréts de 'approche « ge-
nerator and policy KSs »est d'implémenter une stratégie s’étendant de maniere incrémentale dans
I'espace de recherche. Et il permet également d’apporter un mécanisme permettant une recherche
plus globale avec une planification basique.

WORD-SEQ

Un autre «large grained KSs »utilisé dans HSII est WORD-SEQ (ou WOSEQ). Rechercher des
réponses de haut niveau via des hypothéses de niveaux intermédiaires permet de regrouper les
contraintes de facon incrémentale. Cela peut se produire dans un grand nombre de résolution de
probleme. Appliquer ces contraintes partielles peut diminuer les temps de calculs et éliminer un
grand nombre d’hypotheéses a considérer en appliquant I’ensemble des contraintes.

KSI Clusturing

Comme aucune technique de diagnostic différentiel explicite n’était utilisé dans HSII, le KSI
Clustering (regroupement des instances de sources de connaissance) fut implementé afin de permettre
un diagnostic différentiel limité. Cela implique de regrouper les hypotheéses ayant des évaluations
similaires. Cette technique est tres utile lorsque ces hypotheses regroupées sont concurrentes, mais
sans pour autant poser probléme lorsqu’elles ne le sont pas. Le KSI Clustering a été développé parce
que lorsque des hypotheses alternatives dont les évaluations similaires sont concurrentes, la stratégie
«island driving »de HSII pose des problémes en excluant les autres alternatives.

3.3 Autres Architectures de controle

3.3.1 HASP/SIAP : Contrdle basé sur les événements

Contrairement au systeme basé sur un agenda de HSII, HASP utilise un mécanisme de controle
se référant aux occurrences d’événements prédéfinis. Plutot que de reporter de fagon systématique
les changements possibles, le modeéle HASP spécifie les changements qui 1'intéressent en définissant
ses propres ensembles de type d’évenements. Ensuite, HASP spécifie une séquence d’événements a
exécuter pour chaque type d’événements.

Algorithm 4 Boucle de contrdle pour le modele HASP.

1: repeat

2: Sélection des catégories d’événements par le module de stratégie

3: Sélection des événements et identification des sources de connaissances appropriées
4: Exécution des sources de connaissances.

5. until les critéres de terminaison sont vérifiés

3.3.2 CRYSALIS : Contréle hiérarchique

Contrairement au modele HSII, CRYSALIS utilise une hiérarchie de sources de connaissance a
controler pour sélectionner la résolution de domaine ou probleme a exécuter. CRYSALIS a deux

Quelques algorithmes des sciences cognitives Page 14

4N
HEPITA Chapitre 3. Algorithmes des Blackboards

niveaux de contrdle, sur les stratégies et les taches. La premiere phase permet de sélectionner une
séquence de sources de connaissance a exécuter. La seconde sélectionne les événements intéressants
et les séquences de domaine des sources de connaissance. Un des avantages de cette approche
hiérarchique est que les actions sont directement identifiées ce qui rend le processus plus efficace.

3.3.3 Architecture Blackboard Goal-Directed

Un des handicaps posé par 'architecture présentée précédemment est que le format des regles ne
permet pas un contrdle du raisonnement aussi explicite que dans les systémes utilisant des fonctions
numériques complexes d’évaluation. Cette architecture dont le controle est basé sur un agenda
constitue une réponse a ce probleme.

Algorithm 5 Boucle de controéle pour I’architecture Goal-Directed

1: repeat
2: A partir des buts, on détermine des sous-objectifs quand cela est approprié, grace au Goal-to-
SubGoal Mapping
Identification des sources de connaissances déclenchés
Vérification des préconditions des sources de connaissances déclenchées
Mise a jour de I’'agenda avec les KSI représentant les sources de connaissances actives.
Evaluation des KSI et sélection des KSI a exécuter
Exécution des KSI
Envoi des objectifs grace au Hypothesis-to-Goal Mapping
until les critéres de terminaison sont vérifiés

3.34 BB1

L’architecture BB1 est une extension de l’architecture de contréle HSII permettant en plus un
mécanisme de contrdle de planification. Dans BB1, le probleme de controle est traité au sein méme
de la tache de résolution de probleme. Les problemes de domaine et de contrdle sont résolus en
utilisant une approche blackboard. Dans ce but, la structure BB1 integre un contréle de blackboard
aux domaines du modéele HERSAY-II. La boucle de contrdle standard de BB1 est identique a celle de
HSIL

3.3.5 Modele basé sur une planification incrémentale

Cette architecture permet une planification incrémentale pour les systéemes d’interprétation basés
sur les blackboards, intégrant les avantages d’une structure blackboard de résolutions de buts. Ce
modele spécifie les solutions potentielles dans I'espace de recherche, les relations entre les différentes
solutions et la difficulté probable pour les construire. Toutes les données sont utilisées pour effectuer
la planification. Ce modele permet de développer des objectifs lointains de haut niveau correspondant
aux criteres de terminaison.

3.3.6 L’architecture channelized, parameterized

L’architecture blackboard channelized parameterized est une extension de ’architecture basée
sur la réalisation de buts combinés avec une version modifiée de BB1. L'objectif de cette architecture
était de trouver un systéme de résolution de probléemes dans certaines applications temps réel. Dans
ce type de cas effectivement 1’exécution de la boucle du blackboard doit étre efficace et prévisible,
alors que le nombre potentiel d’instance de sources de connaissance peut étre énorme lorsque 1'on
considére des méthodes approximatives de traitement. En plus, il doit y avoir une représentation des
buts actuels et futurs poursuivis.

Quelques algorithmes des sciences cognitives Page 15

4N
HEPITA Chapitre 3. Algorithmes des Blackboards

3.3.7 ATOME : Contrdle hybride multiple

Dans la structure ATOME, la sélection des domaines de source de connaissance a exécuter est
obtenue avec un mécanisme de controle dérivé de celui de CRYSALIS. L'objectif était d’augmen-
ter 1'efficacité du systéeme blackboard sans sacrifier la flexibilité des architectures basées sur les
mécanismes de controle de HSII. Effectivement, une architecture de contréle hiérarchique permet
généralement d’augmenter l'efficacité de la création du controle de décision, mais peut compro-
mettre sa capacité a saisir des opportunités lorsque cela se révele approprié. Au final, ATOME dérive
de l'architecture CRYSALIS en ajoutant la possibilité de résoudre des sous-problemes soit en iden-
tifiant directement des sources de connaissance a exécuter ot en appliquant le mécanisme basé sur
I'agenda pour sélectionner les sources de connaissance.

3.3.8 CASSANDRA : Controle Blackboard distribué

L’architecture CASSANDRA est une modification significative du modele blackboard, et pas
seulement une alternative de son architecture de controle. L'objectif était de répondre a une limitation
du modele blackboard : leur manque de modularité et de flexibilité pour un grand nombre de
probléemes. Pour augmenter la modularité dans CASSANDRA, la base de données et les mécanismes
de controle sont structurés de fagon modulaire. Le principal composant de CASSANDRA est la
gestion de niveau : LM (level manager). Chaque gestionnaire de niveau inclut sa propre base de
données locale de solutions partielles, son propre ensemble de sources de connaissance et son propre
mécanisme local de controdle.

3.3.9 RESUN : Planification pour résoudre les sources d’incertitude

RESUN est une structure d’interprétation basée sur le blackboard, qui fait partie des plus récentes
architectures de contrdle de blackboard. Son but premier est d’étendre le rang des méthodes que les
systémes d’interprétation peuvent utiliser pour résoudre les incertitudes en permettantl'implémentation
de stratégies de contrdle sophistiquées. Ces stratégies impliquent une grande quantité de connais-
sances spécifiques au contexte étudié. Pour cela, la représentation d’hypotheses des blackboard
conventionnel a été étendue et le mécanisme d’agenda a été abandonné pour un systéeme de planifi-
cation incrémental.

Pour utiliser les méthodes directes permettant de résoudre 'incertitude, le systéme doit étre ca-
pable de comprendre pour quelles raisons ces hypotheses sont incertaines. Pour ce faire la représentation
d’hypotheses de RESUN maintient des informations détaillées sur les raisons pour lesquelles une hy-
pothese est incertaine et sur les relations évidentes entre les différentes alternatives.

Quelques algorithmes des sciences cognitives Page 16

EPITA Chapitre 4. Algorithmes de programmation par contraintes

Chapitre 4

Algorithmes de programmation par
contraintes

4.1 Présentation et notations

La notion de Problemes de Satisfaction de Contraintes (CSP) désigne 1’ensemble des problemes
définis par des contraintes et consistant a chercher une solution les respectant. Ils se modélisent sous
la forme d’un ensemble de contraintes posées sur des variables, chacune de ces variables prenant
ses valeurs dans un domaine. De fagon plus formelle, on définira un CSP par un triplet (X, D, C)
ou X représente I'ensemble des variables, D est la fonction qui associe a chaque variable Xi son
domaine D(Xi) i.e. 'ensemble des valeurs que peut prendre Xi et enfin C I’ensemble des contraintes.
Chaque contrainte Cj est une relation entre certaines variables de X, restreignant les valeurs que
peuvent prendre simultanément ces variables. On appelle affectation, noté A, le fait d’instancier
certaines variables par des valeurs. Une affectation est dite totale si elle instancie toutes les variables
du probleme; elle est dite partielle si elle n’en instancie qu'une partie. Une affectation (totale ou
partielle) est consistante si elle ne viole aucune contrainte, et inconsistante si elle viole une ou
plusieurs contraintes. Une solution est une affectation totale consistante, c’est-a-dire une valuation
de toutes les variables du probleme qui ne viole aucune contrainte. Les bases étant posées passons a
I'étude des algorithmes plus ou moins efficaces permettant de résoudre ces problemes.

4.2 Algorithmes

4.2.1 Commentaires liminaires

Les algorithmes que nous allons étudier permettent de résoudre de facon générique n’importe
quel CSP sur les domaines finis. Il existe d’autres algorithmes plus spécifiques qui tirent parti de
connaissances sur les domaines et les types de contraintes pour résoudre des CSP. Par exemple, les
CSP numériques linéaires sur les réels peuvent étre résolus par I'algorithme du Simplex (bien connu
enrecherche opérationnelle) ; les CSP numériques linéaires sur les entiers peuvent étre résolus en com-
binant I’algorithme du Simplex avec une stratégie de Séparation et Evaluation ; les CSP numériques
non linéaires sur les réels peuvent étre résolus en utilisant des techniques de propagation d’inter-
valles; etc...

Nous aborderons principalement les algorithmes de recherche systématique qui nous le verrons
peuvent étre couplés avec des techniques d’analyse de consistance qui permettent de réduire les re-
cherches. Nous verrons également qu'il existe aussi un certain nombre d’heuristiques et de techniques
qui permettent de trouver des solutions non completes ou pas toujours optimales aux CSP.

Quelques algorithmes des sciences cognitives Page 17

EPITA Chapitre 4. Algorithmes de programmation par contraintes

4.2.2 Génere et Teste - Generate and Test (GT)

La fagon la plus simple (treés naive, peu efficace et inexploitable dans le monde industriel!) de
résoudre un CSP sur les domaines finis consiste a explorer toutes les affectations totales possibles
jusqu’a en trouver une qui satisfasse toutes les contraintes. L'algorithme est donné ci-apres et ne
nécessite pas de commentaires particuliers, il est de complexité O(max(|Di])"), avec n le nombre de
variables.

Algorithm 6 Génere et Teste (GT)

Require: (X,D,C) CSP sur domaines finis, A une affectation partielle pour (X,D,C)
Ensure: retourne vrai sil'affectation A peut étre étendue en une solution pour (X,D,C), faux sinon
1: function GENEReETESTE(A,(X,D,C))

2: if toutes les variables de X sont affectées a une valeur dans A then > A affectation totale
3: if A est consistante then > A est une solution
4: return vrai
5: else
6: return faux
7: end if
8: else > A est une affectation partielle
9: Choisir une variable Xi de X qui n’est pas encore affectée a une valeur dans A

10: for toute valeur Vi appartenant a D(Xi) do

11: if GenereTeste(A U {(Xj, Vi)}, (X,D,C)) = vrai then

12: return vrai

13: end if

14: end for

15: return false

16: end if

17: end function

4.2.3 Simple retour arriére - Backtracking (BT)

Une premiére facon d’améliorer ’algorithme GT consiste a tester au fur et a mesure de la construc-
tion de 'affectation partielle sa consistance : des lors qu'une affectation partielle est inconsistante, il
est inutile de chercher a la compléter. Dans ce cas, on « retourne en arriére »(backtrack) jusqu’a la
plus récente instanciation partielle consistante que 1’on peut étendre en affectant une autre valeur a
la derniere variable affectée. Ce procédé permet donc d’explorer moins exhaustivement 1’arbre des
affectations possibles, mais il reste évidemment perfectible.

Quelques algorithmes des sciences cognitives Page 18

EPITA Chapitre 4. Algorithmes de programmation par contraintes

Algorithm 7 Simple retour arriere - Backtracking (BT)

Require: A = affectation partielle, (X,D,C) CSP sur domaines finis
Ensure: retourne vrai si A peut étre étendue en une solution pour (X,D,C), faux sinon
1: function BackTrack(A,(X,D,C))

2: if A n’est pas consistante then

3 return faux

4: end if

5 if toutes les variables de X sont affectées a une valeur dans A then > A affectation totale

consistante = solution

6: return vrai
7: else > A est une affectation partielle consistante
8: choisir une varibale Xi de X qui n’est pas encore affectée a une valeur dans A
9: for toute valeur Vi appartenant a D(Xi) do
10: if BackTrack(A U {(Xj, Vi)}, (X,D,C)) = vrai then
11: return vrai
12: end if
13: end for
14: return false
15: end if

16: end function

4.2.4 Anticipation par noeud - Node Consistency (NC)

Pour améliorer 1’algorithme simple retour-arriere, on peut tenter d’anticiper les conséquences de
l'affectation partielle en cours de construction sur les domaines des variables qui ne sont pas encore
affectées : si on se rend compte qu'une variable non affectée Xi n’a plus de valeur dans son domaine
D(Xi) qui soit localement consistante avec 'affectation partielle en cours de construction, alors il n’est
pas nécessaire de continuer a développer cette branche, et on peut tout de suite retourner en arriere
pour explorer d’autres possibilités.

Pour mettre ce principe en oeuvre, on va, a chaque étape de la recherche, filtrer les domaines des
variables non affectées en enlevant les valeurs localement inconsistantes, ¢’est-a-dire celles dont on
peut inférer qu’elles n’appartiendront a aucune solution. On peut effectuer différents filtrages, cor-
respondant a différents niveaux de consistances locales, qui vont réduire plus ou moins les domaines
des variables, mais qui prendront aussi plus ou moins de temps a s’exécuter. Les algorithmes qui
suivent respectent ce principe de maniére plus ou moins complexe, avec plus ou moins d’anticipation.

C’est l'algorithme de ce type le plus simple. Le principe général de 'algorithme anticipation
par noeud reprend celui de l'algorithme simple retour-arriere, en ajoutant simplement une étape de
filtrage a chaque fois qu'une valeur est affectée a une variable. Le filtrage consiste, ici, a anticiper d'une
étape I"énumération : pour chaque variable Xi non affectée dans A, on enléve de D(Xi) toute valeur
v telle que l'affectation AU{(Xi,v)} soit inconsistante. Voici I'algorithme intégré dans 1’algorithme
précédent.

Quelques algorithmes des sciences cognitives Page 19

EPITA Chapitre 4. Algorithmes de programmation par contraintes

Algorithm 8 Anticipation par noeud - Node Consistency (NC)

Require: A = affectation partielle consistante, (X,D,C) CSP sur domaines finis
Ensure: retourne vrai si A peut étre étendue en une solution pour (X,D,C), faux sinon
1: function Nc(A,(X,D,C))
2: if toutes les variables de X sont affectées a une valeur dans A then > A affectation totale
consistante = solution

3: return vrai
4: else > A affectation partielle consistante
5: choisir une variable Xi de X qui n’est pas encore affectée a une valeur dans A
6: for toute valeur Vi appartenant a D(Xi) do » filtrage des domaines par rapport a A U {(Xi,Vi)}
7: for toute variable Xj de X qui n’est pas encore affectée do
8: Dfiltré(Xj) « Vj élément de D(Xj) / A U {(Xi, Vi), (Xj,Vj)} est consistante
9: if Dfiltré(Xj) est vide then
10: return faux
11: end if
12: end for
13: if Nc(A U {(Xi,Vi)}, (X,Dfiltré,C)) = vrai then
14: return vrai
15: end if
16: end for
17: return faux
18: end if

19: end function

4.2.5 Anticipation par arc - Arc Consistency (AC)

AC offre un filtrage plus poussé que 'algorithme précédent. Il teste la consistance des contraintes
binaires entre des paires de variables. Il réduit ainsi la taille des domaines a explorer en supprimant les
valeurs qui violent les contraintes binaires. L'idée peut-étre représenté par un graphe des contraintes,
I'arc (Xi, Xj) est un arc consistant si pour toute valeur vi de D(Xi) il y a une valeur vj de D(Xj) telle que
Xi=vi et Xj=vj soit permise par les contraintes reliant Xi et Xj. Des lors on peut supprimer les valeurs
des domaines qui sont inconsistantes avec ces contraintes binaires.

Ceci a évidemment pour effet de réduire la taille des domaines a explorer et ce de facon plus
radicale que NC. Si le domaine est vide a I'issue du test de consistance, le CSP n’a pas de solution et
I'algorithme s’arréte. La fonction Revise illustre le procédé et sert de base a AC1, AC2 et AC3.

Algorithm 9 Anticipation par arc - Arc Consistency (AC)

1: function Revise((Xi, Xj), (X,D,C))

2 DELETE « faux

3 for tous les Vi appartenant a D(Xi) do

4 if il n'y a pas de Vj dans D(Xj) qui satisfasse les contraintes binaires entre Xi et Xj then
5: Supprimer Vi de D(Xi)
6

7

8

DELETE « vrai
end if
end for
9: return DELETE
10: end function

Quelques algorithmes des sciences cognitives Page 20

EPITA Chapitre 4. Algorithmes de programmation par contraintes

AC1 (Mackworth)

AC1, AC2 et AC3 sont basés sur la répétition de la procédure Revise vu plus haut. Le CSP est
rendu AC CSP par l'itération successive de la procédure Revise jusqu’a ce qu’il n’y ait plus de mo-
dification dans les domaines des variables. La différence entre ces 3 algorithmes est le choix des arcs
sur lesquels va étre relancée la procédure lorsqu'un domaine change. Si a I'issue de ces applications
de l'algorithme le domaine devient vide, le probleme n’a pas de solution.

AC1 est le plus simple. Il réapplique Revise sur chaque domaine a chaque fois qu'un domaine
est changé. AC1 est donc cotliteux car certains domaines se voient réappliqués Revise alors que cela
n’est en fait pas nécessaire. Le probléme majeur est que la révision réussie, de méme un seul arc, a
une itération, force tous les autres arcs a étre revisité a la prochaine itération.

Algorithm 10 AC1

1: function AC1((X,D,C))

2 Q « {(Xi, Xj) / il existe une contrainte entre Xi et Xj}
3 repeat

4: R « false

5: for Tous les (Xi, Xj) de Q do

6

7

8

R « (R ou Revise((Xi, Xj), (X,D,C)))
end for
until non R
9: return (X,D,C)
10: end function

AC2 (Waltz) AC3 (Mackworth)

Ce sont des algorithmes plus efficaces qu’AC1 car ils ne réappliquent Revise que le nombre
de fois nécessaires. AC3 est 'un des plus utilisés, il implémente une simple file d’arcs a étudier. Cet
algorithme relance Revise seulement sur les arcs qui pourraient avoir été affectés par une modification
antérieure.

Algorithm 11 AC3

1: function AC3((X,D,C))

2 Q « {(Xi, Xj) / il existe une contrainte entre Xi et Xj}
3 while Q # @ do

s Q = Q\ (X, X

5: if Revise((Xi, Xj), (X,D,C)) then

6:

7

8

Q <« QU {(Xk, Xi) /il existe une contrainte entre Xk et Xi et Xk # Xi et Xk # Xj}
end if
end while
9: return (X,D,C)
10: end function

AC4 (Mohr and Henderson)

AC4 conserve l'idée de réitérer un minimum de fois possible la routine de révision des domaines
et ajoute des structures de données plus complexes pour contenir I'information des valeurs de chaque
variable. En particulier, pour chaque valeur des variables il y a un compteur indiquant le nombre
de valeurs satisfaisantes contenues dans le domaine D(Xj) associé. L’appel de la fonction Revise sera
alors fait quand le nombre de ces valeurs satisfaisantes atteint 0. Grace au maintien de ces structures,
AC4 peut reduire le nombre d’appel a Revise, mais malheureusement la mise a jour de ces structures
lourdes a un cofit qui le handicape face aux autres algorithmes.

Quelques algorithmes des sciences cognitives Page 21

EPITA Chapitre 4. Algorithmes de programmation par contraintes

ACS5 (Hentenryck, Deville and Teng)

ACS5 est un algorithme générique de consistance des arcs qui peut rivaliser avec AC3 avec une
bonne complexité en moyenne ainsi qu’avec AC4 avec une meilleur complexité au pire cas. De
plus, cet algorithm peut exploiter des informations sémantiques durant les révisions, en particulier il
apporte de bons resultats avec contraintes fonctionnelles ou monotes.

AC6 (Bessiere)

AC6 améliore a la fois la consommation de mémoire d’AC4 et le temps moyen d’exécution.
Au lieu de garder I'ensemble complet des compteurs, AC6 mémorise seulement un compteur pour
chaque valeur. Si le compteur est perdu par une réduction de domaine un autre est cherché. Ainsi, la
complexité de I'initialisation d’AC4 est réduite et de larges structures de données sont inutiles.

AC7 (Bessiere, Freuder et Regin)

ACY7 est une extension d’AC6 qui utilise la symétrie des contraintes : si la valeur v1 supporte une
autre valeur v2 alors v2 supporte v1 également.

AC1 - AC7 sont des algorithmes de forte consistance des arcs (tous les arcs sont des arcs consis-
tants). C’est pourquoi la majeur partie du temps d’exécution est passée a réitérer Revise. Une autre
alternative permettant de réduire les temps est de considérer 1'algorithme suivant de consistance
faible des arcs.

Weak AC - Directional Arc Consistency (DAC)

DAC est plus faible qu’AC, les arcs sont consistants dans seulement une direction. DAC est un
algorithme qui n’a pas besoin de rerévision. DAC ordonne les variables dans le graphe de contraintes
en conservant la consistance des arcs (i, j) ot ijj uniquement. DAC est donc plus efficace qu'un AC
complet dans la construction du CSP consistant car chaque arc est révisé exactement une fois. DAC
supprime cependant moins de valeurs qu’AC, il requiert moins de calculs qu’AC1-3 et moins d’espace
qu’AC4.

DAC n’élimine pas complétement la nécessité de retour en arriere, mais en général il réduit
considérablement 'espace de recherche.

4.2.6 Path Consistency (PC)

PC est une technique de consistance plus forte qu’AC, il en représente une extension naturelle.
Au lieu de considérer les valeurs inconsistantes d’un arc entre une paire de variables, PC teste
I'inconsistance des valeurs de toutes les paires de variables. En d’autres termes, la longueur du
chemin considéré par AC est égale a 1 tandis que celle de PC est au moins égale a 2. Le chemin (V1, ...,
Vn) est consistant si pour toute paire V1, Vn de valeurs consistantes, il existe des valeurs V2, ..., Vn-1
telles que toutes les contraintes Vi, Vi+1 soient satisfaites. Un CSP est consistant de chemin si tous
ses chemins sont consistants. La plupart des algorithmes s’intéressent a la consistance des chemins
de longueur 2. Comme AC, PC procede par itérations succéssives d'un algorithme de révision des
domaines. I y a plusieurs implémentations de PC, PC1 & PC5. PC1 se rapproche de AC1 sauf que l'on
consideére des chaines de longueur 2 et non plus 1. Comme AC1 il réitere 1’algorithme de révision de
facon trop brutale ce qui le rend en pratique peu exploitable.

PC2 - PC3 (Mohr, Henderson)

PC2 et PC3 sont des algorithmes améliorés pour lesquels seulement les contraintes significatives
sont visitées. Comme AC2 et AC3, PC répete la révision des domaines seulement sur les chemins
affectés par une itération précédente, et non sur les 3 variables comme PC1.

Quelques algorithmes des sciences cognitives Page 22

EPITA Chapitre 4. Algorithmes de programmation par contraintes

PC4 (Han and Lee)

PC4 est une amélioration de PC3 qui ajoute des structures de données plus complexes (des listes)
pour conserver les informations sur les supporters des variables (valeurs qui rendent la chaine satis-
fiable). Ces informations aident a déterminer les chemins devant étre revisités apres un changement
de domaine.

PC5 (Singh)

PC5 est une extension de PC4 qui utilise le méme principe qu’AC6, un seul supporter est calculé
et un nouveau supporter est recherché quand le supporter courant est perdu.
Bien que la consistance des chemins de longueur 2 soit strictement plus forte que la consistance
des arcs, cette méthode est rarement utilisée en pratique, en effet PC souffre des probléemes suivants :
— PC élimine plus d’inconsistances qu"AC mais le rapport performance complexité est pire qu"AC
— PC consomme beaucoup de mémoire car il nécessite une représentation par extension des
contraintes.

Weak PC - DPC

Directional Path Consistency (DPC) est plus faible que PC, comme DAC est plus faible qu’AC.
DPC fait presque les mémes opérations que PC sauf que DPC choisit et met a jour 3 variables en
descendant.

RPC

Restricted Path Consistency (RPC) (Pierre Berlandier) est une combinaison des avantages d’AC
et PC. RPC augmente la puissance d’AC4 en appliquant PC si il y a seulement un supporter dans
une contrainte (il anticipera d"une étape). Si le supporter n’a pas de supporter alors RPC enleve la
valeur du domaine. RPC supprime au moins le méme nombre de valeurs inconsistantes qu’AC. RPC
est donc plus fort que tous les autres algorithmes AC. Cependant, comme PC est appelé seulement
sous la condition d"un seul supporter, RPC est plus faible qu'un PC complet.

4.2.7 Combinaison de recherche systématique et techniques de consistance

Nous avons présenté 2 approches différentes : la recherche systématique et les techniques de
consistances. La combinaison de ces 2 méthodes augmente 1'efficacité de recherche de solutions. Une
fagon simple de procéder est d"utiliser les techniques de consistance pour réduire la taille du probleme
et ensuite d’utiliser la recherche systématique pour trouver une solution. Cela permet évidemment
de réduire I'espace de recherche, si I'ensemble des domaines est vide il est d’ailleurs évidemment
inutile de lancer la recherche.

Une autre approche consiste a lancer des recherches de consistance durant 'exécution de la
recherche systématique. Il y a 2 méthodes d’implémentation : Look Back et Look Ahead.

Look Back

Lorsque qu’un retour en arriére a lieu, 1’algorithme peut identifier la source d’inconsistance. Ainsi
iln’y a pas de travail redondant. Cependant, la détection tardive du conflit est un inconvénient. Back-
jumping (BJ) utilise les contraintes violées comme guide pour trouver la variable rentrant en conflit.
Backmarking (BM) garde en mémoire les valeurs incompatibles avec la valeur récemment assignée.
Tant que cette valeur est en cours d’étude, les valeurs incompatibles ne seront pas considérées. Back-
checking (BC) est une amélioration de BM. Il réduit le nombre de tests de compatibilité en gardant en
mémoire les inconsistances. De plus, il évite la répétition inutile de test de compatibilité qui ont déja
été effectué avec succes.

Quelques algorithmes des sciences cognitives Page 23

EPITA Chapitre 4. Algorithmes de programmation par contraintes

Look Ahead

Avant d’assigner une valeur a la prochaine variable, AC est appliqué pour réduire la taille du
domaine de la prochaine variable. Si le domaine devient vide, la solution partielle courante est in-
consistante. Avec cette méthode, lorsqu'une variable est assignée, toutes ses valeurs restantes sont
garanties d’étre consistantes avec les variables de la solution partielle. Les conflits sont donc anticipés.

Les différences entre Forward checking, Look Ahead partiel et Look Ahead complet viennent de la
force de I’AC utilisé. Forward Checking (FC) utilise I’AC le plus faible avec seulement les contraintes
de la variable courante et des futures variables. Partial Look Ahead (PLA) applique DAC avec les
contraintes de la variable courante et des futures variables et celles des futures variables et de leurs
futures variables. Full Look Ahead (FLA) accomplit un AC complet avec toutes les futures variables
non encore instanciées. FLA detecte les valeurs inconsistantes plus tot que PLA et FC. PLA detecte
les inconsistances plus tot que FC.

Evidemment tout cela a un coit. Dans certains cas FLA peut méme étre plus cotiteux qu'un simple
backtracking. C’est pourquoi FC et BC sont encore utilisés dans des applications.

4.2.8 Améliorations de la recherche

Choisir le bon ordre des variables et valeurs a teste peut améliorer l'efficacité de la recherche
de solution d’un CSP. L’ordre peut étre soit un ordre statique prédéfini a I’avance ou bien un ordre
dynamique, dans lequel le choix de la prochaine variable a étudier dépend de l'état courant des
recherches. Il existe un certain nombre d’heuristiques pour choisir un ordre.

Ordre des variables

Minimal Width Ordering (MWO)

I s’agit d"une heuristique qui donne un ordre statique de choix de variables, les variables qui sont
contraintes par le plus de variables seront étudiées en premieres. En conséquence, moins de retour
en arriere seront nécessaires.

Minimal bandwidth ordering (MBO)

MBO est une heuristique qui donne un ordre dynamique. L'ordre des variables est utilisé avant
un retour arriere. La variable qui a le moins de distance (largeur de bande) est choisie pour le retour
arriere. La largeur de bande d'un noeud V dans un graphe ordonné est la distance maximale entre
V et tout noeud qui lui adjacent selon 1’ordre. La bande passante d"un ordre h est la bande passante
maximale de tous les noeuds du graphe et la bande passante d’un graphe est la bande passante
minimale de tous les ordres du graphe.

The Fail First Principle (FFP)

FFP est une heuristique générale de recherche. Il s’agit d’accomplir d’abord les taches les plus sus-
ceptibles d’échouer. La mesure de la probabilité déchec peut étre faite en considérant les contraintes et
les tailles des domaines des variables. La variable qui a le plus de contraintes ou le plus petit domaine
a plus de change de mener a des inconsistances. L'implémentation de FFP peut étre dynamique ou
statique.

La méthode Search Rearrangement est une heuristique tres puissante proposée par Bitner et Rein-
gold souvent utilisé avec FC. Dans cette méthode, la variable qui offre le moins d’alternatives possibles

Quelques algorithmes des sciences cognitives Page 24

EPITA Chapitre 4. Algorithmes de programmation par contraintes

est choisie pour l'instanciation. L'ordre d’instanciation des variables est déterminé dynamiquement.
Freuder présenta l'instanciation le plus tot possible des variables participant au plus grand nombre
de contraintes.

Fox, Sadeh et Baykan ont travaillé sur ’analyse structurale des caractéristiques du CSP a résoudre
pour déterminer I'ordre des variables a choisir.

4.2.9 Ordre des valeurs

L'ordre des valeurs choisi peut avoir un impact substanciel sur le temps mis pour trouver la
premiére solution. Quand la décision est prise d’instancier une variable, il se peut qu’elle est plu-
sieurs valeurs possibles. Un ordre différent de choix des valeurs changera la structure arborescente
des noeuds de l'arbre de recherche. Cela peut représenter un avantage si ce choix assure que la
branche qui méne a une solution est choisie avant une branche qui ne mene a rien. Bien sfr, si 'on
recherche tous les solutions, ou si le CSP n’a pas de solution 1'ordre est indifférent.

Succeed first Principle

SFP est une stratégie qui choisit la valeur qui a le plus de chance de succes et le moins de chance
de mener a un conflit. Une heuristique possible est de choisir préférentiellement les valeurs qui
maximisent le nombre d’options disponibles. AC4 est adapté a cette heuristique puisqu’il compte le
nombre de supporters. La valeur qui a le plus de supporters doit étre choisie en premiére.

Pour des problemes aléatoirement choisis, et probablement en général, le travail que cela implique
ne vaut pas le bénéfice qu’il apporte, c’est a dire celui de choisir une valeur qui sera en moyenne plus
susceptible de conduire a une solution qu’une autre. Pour certains types de problemes cependant, il
peut y avoir des informations permettant de choisir un ordre susceptible de conduire plus vite a une
solution.

4.2.10 Résolution des MCSP

Parmi les CSP il y a des problemes qui n’ont pas de solution compléte. Résoudre ces problemes
par les algorithmes vu précédemment conduira a un échec. Une solution incomplete est une solution
partielle qui peut étre acceptée. Adopter une solution incomplete peut s’avérer utile dans le cadre
des systemes temps réel ot une solution doit étre trouvée dans un temps limité. Il convient alors
soit d’assouplir les contraintes, soit de satisfaire le plus grand nombre de contraintes possibles.
Assouplir les contraintes consiste par exemple a agrandir les domaines, supprimer une variable
ou une contrainte. Trouver une valeur a toutes les variables, de telle sorte que le moins possible
de contraintes soient violées est la résolution d'un MCSP (Maximum CSP). Il y a deux approches
permettant de résoudre les MCSP, les méthodes exactes et approximatives. Les méthodes exactes
basées sur Branch and Bound (BB) donnent la solution optimale. Les méthodes approximatives
basées sur une recherche locale donne une solution incompléte qui n’est pas forcément optimale.

Méthode exacte

Branch and Bound Algorithm (BB)

BB a été développé pour résoudre les MCSP par Freuder & Wallace. L'algorithme parcourt tous les
chemins, a travers un arbre de recherche, avec un cotit qui ne décroit pas avec la longueur du chemin.
La recherche a travers un chemin donné peut s’arréter lorsque le cotit de 'affectation partielle des
valeurs des variables est au moins aussi grand que le plus petit cotit déja trouvé pour une affectation
totale. BB étend une solution partielle dans chaque chemin de I'arbre et mémorise le chemin le plus
long. Le chemin le plus long qui a le plus grand nombre de variables instanciées est le chemin optimal.
L'efficacité de BB peut étre améliorée par des choix d’ordonnancement de variables et de valeurs, a
I'aide d’heuristique comme vu précédemment.

Quelques algorithmes des sciences cognitives Page 25

EPITA Chapitre 4. Algorithmes de programmation par contraintes

Méthode approximative

Les méthodes approximatives ne garantissent pas 'optimalité de la solution. Il peut y avoir une
autre solution qui satisfait plus de contraintes, mais la solution approximative reste proche de la
solution optimale.

Hill Climbing, Min-Conflicts (MC), Min-Conflicts Random Walk (MCRW), Steepest Descent Ran-
dom Walk (SDRW) and Tabu list sont des algorithmes basés sur une idée commune basée sur la notion
de recherche locale. Dans la recherche locale, une configuration initiale (valuation des variables) est
générée et I'algorithme passe de cette configuration a une configuration voisine jusqu’a trouver une
solution (problemes de décision) ou une bonne solution (problémes d’optimisation) ou encore jusqu’a
ce que les ressources disponibles soient épuisées. Ils utilisent différentes heuristiques et algorithmes
stochastiques pour orienter la recherche.

Les étapes de HC, MC, MCRW, SDRW et Tabu list sont les suivantes :
1. partir d'un état initial généré aléatoirement (assignement complet des valeurs des variables)
2. évaluer le nombre de contraintes violées dans 1'état courant
3. essayer de passer a un état meilleur, état voisin qui differe d"une variable
4

. sil’état courant ne peut trouver un état voisin meilleur et que la solution n’est pas un optimum
global, I’état est noté optimum local

5. Quitter 'optimum local
6. Répéter 2 a 5jusqu’a trouver un optimum global.

La méthode de choix de I'état voisin et de fuite de I'optimum local sont les différences de HC,
MC, MCRW, SDRW et Tabu list.

HC considere voisin, ce qui differe dans la valeur d’une quelconque variable. Le voisinage d’"HC
est donc plutdt large. HC s’échappe des optima locaux en repartant d’une affectation aléatoire des
variables.

MC considére voisin, tout ce qui differe dans la valeur d’'une quelconque variable en conflit. MC ne
peut s’échapper des optima locaux.

RW considere voisin, tout état choisi aléatoirement. Il est difficile de trouver une solution avec cette
technique car elle n’a pas
d’heuristique de recherche.

MCRW améliore MC afin de pouvoir quitter les optima locaux en ajoutant du bruit a 1’algorithme.
MCRW fait une combinaison entre heuristique et RW. Si la probabilité d’utiliser un chemin aléatoire
est p, la probabilité d’utiliser ’heuristique est 1-p.

SDRW est la combinaison de RW avec HC, 'algorithme ne redemarrera pas a chaque fois qu'il est
pris dans un optimum local. Comme pour MCRW, la probabilité d’utiliser un chemin aléatoire est p
et la probabilité d"utiliser une heuristique 1-p.

Tabu mémorise une liste des variables changées et les valeurs de quelques-uns des derniers états
visités. La liste contient les états interdits que le prochain état voisin ne pourra prendre. Cependant
il y a certains criteres qui permettent de passer aux états interdits quand cela conduit a une meilleur
solution que celles obtenues jusqu’ici. Tabu list est une stratégie qui empeche l'algorithme de rester
piéger dans un optimum local.

Quelques algorithmes des sciences cognitives Page 26

EPITRA Chapitre 5. Algorithmes des systemes multi-agents

Chapitre 5

Algorithmes des systemes multi-agents

5.1 Présentation des agents et des systémes multi-agents

La résolution coopérative de problemes prend une place prépondérante dans les recherches en in-
telligence artificielle distribuée (IAD). Les systemes multi-agents (SMA) est un domaine de recherche
dérivé de I'TAD. Les systémes multi-agents se focalisent sur I’étude des comportements collectifs et
sur la répartition de l'intelligence sur des agents plus ou moins autonomes, capables de s’organiser
et d'interagir pour résoudre des problemes.

L'intelligence artificielle distribuée s’intéresse a des comportements intelligents qui résultent de
I'activité coopérative de plusieurs agents. Suite a la distribution de I'expertise sur un ensemble de
composants qui communiquent pour atteindre un objectif global ou résoudre un probléme, il est
nécessaire de diviser le probléeme en sous-problemes. Ainsi une extension des systémes d'IAD est
proposée : les composants doivent étre capables de raisonner sur les connaissances et les capacités
des autres dans le but d"une coopération effective. Pour ce faire, ils doivent étre dotés de capacités de
perception et d’action sur I’environnement et doivent posséder une certaine autonomie de compor-
tement, on parle alors d’agents et par conséquent de systeme multi-agents.

Un agent est ainsi une entité qui percoit son environnement et agit sur celui-ci. Cette entité, réelle
ou abstraite, situé dans un environnement, agit d’une fagon autonome pour atteindre les objectifs
pour lesquels il a été congu.

5.2 Algorithmes de controle

5.2.1 Agents Réactifs

L’exécution d"un agent réactif est directement liée a ses perceptions par une fonction réflexe (sti-
mulus en fonction d’une réponse). Le comportement de 1’agent correspond ainsi a un automate a
états finis.

Algorithm 12 Cycle de base d’un agent réactif :

Require: rules : regles condition-action, percepts : ensemble de percepts

1: repeat

2: stat < InterpretInput(percept)
3: rule « match(state, rules)

4: execute(rule[action])

5: until 'agent est arreté

Le comportement réflexe est fondé sur des comportements, des interactions ou des situations

Quelques algorithmes des sciences cognitives Page 27

EPITRA Chapitre 5. Algorithmes des systemes multi-agents

élémentaires. Cette modélisation ne comprend pas de représentation de I’environnement des autres
agents ou de ses capacités. L'historique ou les plans d’actions ne sont pas pris en compte : les actions
exécutées ne dépendent que des actions présentes.

5.2.2 Agents délibératifs

Les agents délibératifs utilisent des représentations explicites de 1’environnement, des autres
agents et de leurs capacités. Cela implique la gestion d"un historique et un controle délibératif :

— Interaction avec les autres par des communications sophistiquées

— Participation a des organisations sociales

— Systemes constitués de peu d’agents, hétérogenes

Algorithm 13 Cycle de base d"un agent délibératif :

Require: s: état, eq : file d’événements
1: s « initialise()
2: repeat
3: options < option_generator(eq, s)
4 selected « deliberate(options, s)
5 s « update_state(selected, s)
6: execute(rule[action])
7: eq < get_new_events()
8: until 'agent est arreté

5.2.3 Agents BDI

Une architecture BDI est congue en partant du modele « Croyance-Désir-Intention »(Belief-Desire-
Intention), de la rationalité d"un agent intelligent.

Les croyances d'un agent sont les informations que I'agent posséde sur l'environnement et sur
d’autres agents qui existent dans le méme environnement. Les croyances peuvent étre incorrectes,
incompletes ou incertaines et, a cause de cela, elles sont différentes des connaissances de I’agent, qui
sont des informations toujours vraies. Les désirs d'un agent représentent les états de I’environnement
ou son propre état, tel qu'il aimerait les voir réalisés. Les intentions d"un agent sont les désirs que
I'agent a décidé d’accomplir ou les actions qu’il a décidé de faire pour accomplir ses désirs.

Algorithm 14 Algorithme de controle d’agent BDI

Require: b : croyance, g : desirs, i : intentions, eq : file d’événements
1: (b, g, i) « initialise()
2: repeat
3: options « option_generator(eq, b, g, i)
selected « deliberate(options, b, g, i)
i « selected Union i
execute(rule[action])
eq « get_new_events()
b < update_beliefs(b, eq)
(g, i) « drop_successful_attitudes(b, g, i)
10: (g, 1) « drop_-impossible_attitudes(b, g, i)
11: until 'agent est arreté

R AN LI

Quelques algorithmes des sciences cognitives Page 28

EPITRA Chapitre 5. Algorithmes des systemes multi-agents

5.3 Algorithmes de recherche dans les systemes a agents

Les algorithmes de recherche sont utilisés pour résoudre deux types d’interactions entre les
agents : la coopération pour résoudre les problémes et la compétition dans le cas des jeux. Pour
cela deux grandes classes d’algorithmes de recherche sont utilisées : les algorithmes non-informés
(aveugles), qui réalisent une recherche exhaustive et les algorithmes informés, qui utilisent des sources
d’information supplémentaires en parvenant ainsi a des performances meilleures. Ces méthodes étant
décrites dans les autres sections de ce rapport (cf. section PPC, Elagage, Forward et Backward), nous
ne les détaillerons pas dans cette partie.

5.4 La communication entre agents

541 KQML

« Knowledge Query and Manipulation Language »(KQML) est un langage extérieur de haut ni-
veau pour les agents, orienté sur 'échange des messages, indépendant de la syntaxe et de 'ontologie
du contenu des messages. Indépendant du transport et du langage utilisé, il permet de spécifier le
format des messages échangés par les agents.

Le langage KQML spécifie le format des messages échangés par les agents. Un message KQML
peut étre vu comme un objet, défini par 1'information clé, la performative (la classe) et un nombre
variable d’attributs :

(ask-if // performatif
:sender A // Informations utiles pour le routage et l'interprétation du message
:receiver B
:language prolog
:ontology industrial
:reply-with id1
:content start(process, i) // contenu)

5.4.2 ACL-FIPA

Ayant une syntaxe similaire a KQML le langage de communication entre agents ACL-FIPA s’ap-
puie sur la définition de deux ensembles :

1. un ensemble d’actes de communication primitifs, auquel s’ajoutent les autres actes de commu-
nication pouvant étre obtenus par la composition de ces actes de base

2. un ensemble de messages prédéfinis que tous les agents peuvent comprendre ACL-FIPA
possede 21 actes communicatifs, exprimés par des performatives, qui peuvent étre groupés.
— passage d’information

réquisition d’information

négociation

distribution de taches (ou exécution d’une action)

manipulation des erreurs

En ACL-FIPA il n’existe pas de primitives de gestion ni de facilitation.

5.5 Lanégociation

5.5.1 Présentation

Dans un systeme multi-agents les agents interagissent en vue de réaliser des taches ou d’atteindre
des buts. L'interaction a lieu, d’habitude dans un environnement commun ot1 les agents ont diverses
zones d’influence, notamment diverses parties de I’environnement sur lesquelles ils peuvent agir. Ces

Quelques algorithmes des sciences cognitives Page 29

EPITRA Chapitre 5. Algorithmes des systemes multi-agents

zones peuvent étre disjointes mais, dans la plupart des cas, elles se superposent et I’environnement
est partagé par les agents. En interagissant dans un environnement partagé, les agents doivent
coordonner leurs actions et avoir des mécanismes pour la résolution des conflits. La coordination et
la résolution des conflits sont surtout nécessaire dans le cas des agents egocentrés (des agents ayants
leurs propres buts, désirs, préférences...) ou compétitifs mais aussi bien, parfois, dans le cas des
agents coopératifs pour la communication des changements des plans ou ’allocation des taches. Le
mécanisme favori pour la résolution des conflits et la coordination, inspiré du modéele des humains,
est la négociation.

5.5.2 Négociation aux encheres

Les encheres (auctions) sont des mécanismes d’interaction simples mais nécessitant une étude
préalable d"un certain nombre de probleme, concernant principalement le choix du protocole et de la
stratégie a utiliser. Une enchere comprend habituellement un initiateur (actioneer), et plusieurs par-
ticipants (bidders). Les offres des participants peuvent se faire une seule fois ou en plusieurs tours,
en fonction du protocole d’enchere. A la fin, l'initiateur choisit le gagnant, les regles pour choisir le
gagnant étant, de méme, spécifiques au protocole.

Il y a beaucoup de protocoles d’encheére, nous nous contenterons donc de présenter les plus im-
portants, en expliquant aussi qu’elle est la meilleure stratégie a choisir, lorsqu'une telle stratégie existe.

Enchere anglaise (premier-prix offre-publique)

L’initiateur commence 1'enchere, d’habitude par 1’annonce d’un prix de réservation. Chaque agent
participant annonce de fagon publique son offre, en plusieurs tours successifs. Quand aucun parti-
cipant ne veut plus augmenter son offre, 'enchére s’arréte et le participant ayant fait la plus grande
offre obtient 1’objet au prix de son offre.

Dans les encheres a valeurs privées, la stratégie dominante est de faire une offre un peu plus
grande que la derniere offre et de s’arréter quand la valeur privée est atteinte. Dans les encheres a
valeurs corrélées, il n'y a pas de stratégie dominante. Le participant augmente le prix d’une quantité
constante ou d’une quantité qu’il considere justifiée.

Enchere premiere offre-cachée

L’initiateur commence 1’enchere et chaque agent participant soumet une offre, dans un tour unique,
sans connaitre les offres des autres participants. Le participant qui a fait la plus grande offre gagne
'objet au prix de son offre. Dans ce protocole il n'y a pas de stratégie dominante, mais des algo-
rithmes dépendant du contexte peuvent étre réalisés pour évaluer la valeur attribuée par les autres
participants a I'objet.

Encheére hollandaise (descendante)

L’initiateur commence par proposer un prix et, par des tours successifs, diminue ce prix jusqu’au
moment ol un des participants achete 1’objet au prix proposé. Le protocole est équivalent a celui de
I'enchere premier-prix offre-cachée et il n’y a donc pas de stratégie dominante, en général.

Enchere Vickery (deuxiéme-prix offre-cachée)

Chaque agent participant soumet une offre sans connaitre les offres des autres, dans un seul tour.
Jusqu’a ce moment le protocole est le méme que celui de I’enchere premier-prix offre-cachée. La
différence est que le participant qui a fait I'offre la plus grande gagne mais il doit payer le prix de
la deuxiéme plus grande offre. La stratégie dominante d"un participant dans ce cas est de soumettre
une offre avec sa valeur privée de 1'objet. Cette particularité a permis a L'Enchere Vickery d’étre la
plus utilisée pour les agents logiciels.

Quelques algorithmes des sciences cognitives Page 30

EPITRA Chapitre 5. Algorithmes des systemes multi-agents

5.5.3 Allocation des taches par réseau contractuel

Nous avons présenté précédemment des protocoles de négociation entre agents egocentrés, c’est
a dire entre agents ayant leurs propres buts. Le protocole réseau contractuel (Contract Net) est un
protocole de négociation qui a été congu en vue de la coordination d’agents coopératifs ayant les
méme buts et résolvant ensemble les problémes. Ce protocole a été une des premiéres approches uti-
lisées dans les systemes multi-agents pour résoudre le probleme d’allocation des taches. Il s’appuie
sur une métaphore organisationnelle : les agents coordonnent leurs activités grace a I'établissement
de contrats afin d’atteindre des buts spécifiques.

Dans le protocole réseau contractuel, les agents peuvent prendre deux roles : gestionnaire et
contractant. L'agent qui doit exécuter une tache (le gestionnaire) commence par décomposer cette
tache en plusieurs sous-taches. Le gestionnaire annonce chaque sous-tache sur un réseau d’agents
(les contractants). Les agents qui recoivent une annonce de taches a accomplir évaluent I’annonce.
Les agents qui ont les ressources appropriées, I’expertise ou l'information requise pour accomplir la
tache, envoient au gestionnaire des soumissions qui indiquent leurs capacités a réaliser la tache. Le
gestionnaire rassemble toutes les propositions qu’il a reques et alloue la tache a 'agent qui a fait la
meilleure proposition.

5.5.4 Allocation des taches par redistribution

Ce type d’allocation utilise des domaines orientés taches (task oriented domains). Un domaine
orienté tache est un triplet < T, Ag,c > ol :
— T est un ensemble de taches
- Ag =11, ... n} est un ensemble d’agents qui participent a la négociation
— cest une fonction cott qui définie les cofits nécessaires pour exécuter chaque sous-ensemble de
taches.

La fonction cotit doit satisfaire deux contraintes : elle doit étre monotone et le cotit de ne pas
exécuter une tache doit étre zéro.

Pour réaliser une meilleure allocation des taches les agents utilisent un protocole appelé le proto-

cole de concession monotone. Les regles du protocole sont comme suit :

— La négociation se déroule en une suite de tours.

— Aupremier tour, les deux agents proposent simultanément une affaire de la série de négociation.

— Un accord est atteint si les deux agents proposent des affaires Al et A2 telles que
soit utilité1(A2) > utilité1(A1) soit utilité2(A1) > utilité2(A2).

— Siun accord est atteint : si les deux offres des agents égalent ou dépassent ceux de l'autre agent,
alors une des propositions est choisie au hasard. Si seulement une proposition dépasse ou égale
'autre proposition, alors c’est elle qui est I’affaire sur laquelle les agents sont d’accord.

— Si aucun accord n’est atteint, alors la négociation continue pour un autre tour de propositions
simultanées. Au tour u + 1, aucun agent n’a le droit de faire une proposition qui est moins préférée
par l'autre agent que 'affaire qu’il a proposée au tour u.

— Si aucun agent ne fait de concession a un tour donné, alors la négociation est terminée et il y a
conflit.

Le protocole de concession monotone garantit que la négociation se terminera avec ou sans accord,
apres un nombre fini de tours. Cependant le protocole ne certifie pas quun accord sera rapidement
atteint. Il est concevable que la négociation continue pour un nombre de tours qui croit d"une maniere
exponentielle par rapport au nombre de taches a allouer.

Quelques algorithmes des sciences cognitives Page 31

EPITRA Chapitre 5. Algorithmes des systemes multi-agents

5.5.5 Négociation heuristique

La négociation heuristique concerne les agents égocentrés. Le handicape des protocoles présentés
précédemment est que l'initiateur n’a aucun moyen de savoir si sa proposition est acceptable ou non,
et si 'on est proche d’un accord.

Pour améliorer 1'efficacité de la négociation, ce protocole permet aux agents de fournir des
réactions plus utiles aux propositions qu’ils recoivent. Ces réactions peuvent prendre la forme d'une
critique ou d"une contre-proposition (proposition refusée ou modifiée). Une critique est un commen-
taire sur la partie de la proposition que 'agent accepte ou refuse. Une contre-proposition est une
proposition alternative engendrée en réponse a une proposition. A partir de telles réactions, 1'ini-
tiateur doit étre capable d’engendrer une proposition qui est probablement plus apte & mener a un
accord.

5.5.6 Négociation par argumentation

La négociation par argumentation permet aux agents d’essayer de changer le rejet ou la modifica-
tion d'une proposition faite par un autre agent en utilisant des arguments. Ainsi, un agent peut essayer
de persuader un autre agent de répondre favorablement a sa proposition en cherchant des arguments
qui identifient de nouvelles occasions ou modifient les criteres d’évaluation. En plus d’engendrer pro-
positions, contre-propositions et critiques, un agent cherche a rendre la proposition plus attirante en
fournissant une information supplémentaire sous forme d’arguments pour sa proposition. La nature
et les types des arguments peuvent varier énormément :

— Mode logique (nature déductive)

— Mode émotif

— Mode viscéral (menace par exemple)

— Mode kisceral (intuition, religion...)

Quelques algorithmes des sciences cognitives Page 32

HEPITA Chapitre 6. Algorithmes des réseaux de neurones

Chapitre 6

Algorithmes des réseaux de neurones

6.1 Présentation des réseaux de neurones

Un réseau de neurones est un systeme composé de plusieurs unités de calcul simples fonctionnant
en paralléele, dont la fonction est déterminée par la structure du réseau, la solidité des connexions, et
'opération effectuée par les éléments ou noeuds.

Dans un réseau, chaque sous-groupe fait un traitement indépendant des autres et transmet le
résultat de son analyse au sous-groupe suivant. L'information donnée au réseau va donc se propager
couche par couche, de la couche d’entrée a la couche de sortie, en passant soit par aucune, une ou
plusieurs couches intermédiaires (dites couches cachées). Il est a noter qu’en fonction de 1’algorithme
d’apprentissage, il est aussi possible d’avoir une propagation de I'information a reculons (back pro-
pagation). Habituellement, chaque neurone dans une couche est connecté a tous les neurones de la
couche précédente et de la couche suivante, excepté pour les couches d’entrée et de sortie.

Les réseaux de neurones ont la capacité de stocker de la connaissance empirique et de la rendre
disponible a I'usage. Les habiletés de traitement (et donc la connaissance) du réseau vont étre stockées
dans les poids synaptiques, obtenus par des processus d’adaptation ou d’apprentissage. En ce sens,
les réseaux de neurones ressemblent donc au cerveau car non seulement, la connaissance est acquise
au travers d'un apprentissage mais de plus, cette connaissance est stockée dans les connexions entre
les entités, soit dans les poids synaptiques

6.2 Les réseaux feed-forward

Appelés aussi réseaux de type Perceptron, ce sont des réseaux dans lesquels I'information se
propage de couche en couche sans retour en arriére possible.

6.2.1 Perceptron simple (ou monocouche)

Le Perceptron est un réseau simple, puisqu’il ne se compose que d"une couche d’entrée et d'une
couche desortie. Le principe de base de sa régle d’apprentissage est d utiliser I’erreur pour modifier les
poids des connexions et diminuer, petit a petit, I’erreur globale du systeme. Si on considere y comme
étant la sortie calculée par le réseau, et d la sortie désirée, le principe de cette regle est d’utiliser
l'erreur (d-y), afin de modifier les connexions et de diminuer ainsi l'erreur globale du systeme. Le
réseau va donc s’adapter jusqu’a ce que y soit égal a d.

Algorithm 15 Algorithme d’apprentissage du Perceptron

1: Initialisation des poids et du seuil a de petites valeurs aléatoires
2: Présenter un vecteur d’entrée x* et calculer sa sortie
3: Mettre a jour les poids en utilisant : w(t + 1) = w;(t) + n(d — y)x; > Avec d la sortie désirée

Quelques algorithmes des sciences cognitives Page 33

HEPITA Chapitre 6. Algorithmes des réseaux de neurones

6.2.2 Rétro-Propagation (back propagation)

Contrairement au Perceptron qui ne peut apprendre que dans les cas dans lesquels les catégories
a apprendre sont linéairement séparables, cet algorithme permet de résoudre ce probleme. Il a fallut
lui ajouter une couche. A l'aide de cette couche centrale, il devient alors facile de faire apprendre une
telle fonction au réseau.

L’algorithme consiste dans un premier temps a propager vers 1’avant les entrées jusqu’a obtenir
une entrée calculée par le réseau. La seconde étape compare la sortie calculée a la sortie réelle connue.
On modifie alors les poids de telle sorte qu’a la prochaine itération, I’erreur commise entre la sortie
calculée et connue soit minimisée. On rétro-propage alors l'erreur commise vers 1'arriére jusqu’a la
couche d’entrée tout en modifiant la pondération.

Algorithm 16 Algorithme de Rétro-Propagation

Initialisation des poids a des petites valeurs aléatoires

Choisir, aléatoirement, un pattern d’entrée x*

Propager I'information (en-avant) dans le réseau

Calculer 6? sur la couche de sortie (O; = Y? 6? = dg(h?)(dl” - yf.‘)) : avec h;"* 'entrée sur la ieme
cellule dans la A°couche. et dg est la dérivée de la fonction d’activation g.

5: Calculer les deltas de la couche précédente par propagation arriere de l’erreur : Pourlde A — 1 a

1 faire 6? = dg(h?) L wf;rléj.”
6: Mettre a jour les poids en utilisant : A;‘i = 17633/?.‘1

7: Retourner en 2 et répeter pour 'entrée suivante, jusqu’a ce que l'erreur en sortie soit inférieure a
la limite fixée ou que le nombre maximum d’itérations soit atteint

6.2.3 Adaline

Le réseau Adaline a été développé par Widrow. Il est constitué d’un unique neurone effectuant la
combinaison linéaire de ses entrées. Il s’agit en fait d'un Perceptron sans saturation des sorties.

Laregle d’apprentissage de ce réseau consiste a minimiser I’erreur quadratique en sortie du réseau
de neurone. La regle d’apprentissage est identique a celle du Perceptron, a la différence prés que ce
sont les entrées non-saturées qui sont prises en compte.

6.2.4 Le perceptron multicouches

C’est une extension du précédent, avec une ou plusieurs couches cachées entre I’entrée et la sortie.
Chaque neurone dans une couche est connecté a tous les neurones de la couche précédente et de la
couche suivante (excepté pour les couches d’entrée et de sortie) et il n'y a pas de connexions entre
les cellules d"une méme couche. Les fonctions d’activation utilisées dans ce type de réseaux sont
principalement les fonctions a seuil ou sigmoides. Il peut résoudre des problemes non-linéairement
séparables et des problemes logiques plus compliqués, et notamment le fameux probleme du XOR.
II suit aussi un apprentissage supervisé selon la régle de correction de l'erreur.

6.2.5 Analyse de discriminants linéaires

Cet algorithme repose sur le postulat de Hebb établi a partir d’observations d’expériences de
neurobiologie : si des neurones, de part et d’autre d’une synapse, sont activés de maniére synchrone
et répétée, la force de la connexion synaptique va aller croissant.

L'une des propriétés remarquables de cette régle est qu’elle exprime que l'apprentissage se fait
localement c’est-a-dire que la modification ne dépend que de 'activité des cellules. Cette approche
simplifie ainsi de maniere significative la complexité d'un circuit d’apprentissage. Un seul neurone

Quelques algorithmes des sciences cognitives Page 34

HEPITA Chapitre 6. Algorithmes des réseaux de neurones

entrainé par la regle de Hebb s’oriente de fagon sélective. L'orientation est déduite a 'aide d'une
distribution gaussienne et utilisés pour entrainer le neurone. Le vecteur de poids est initialisé, puis
au cours de 'apprentissage, le vecteur évolue.

6.3 Les réseaux feed-back

Appelés aussi réseaux récurrents, ce sont des réseaux dans lesquels il y a retour en arriere de
l'information.

6.3.1 Apprentissage de Boltzmann

Les réseaux de Boltzmann sont des réseaux symétriques récurrents. Ils possedent deux sous-
groupes de cellules, le premier étant relié a 'environnement (cellules dites visibles) et le second
ne l'étant pas (cellules dites cachées). Cette régle d’apprentissage est de type stochastique (reléve
partiellement du hasard) et elle consiste a ajuster les poids des connexions, de telle sorte que 1’état
des cellules visibles satisfasse une distribution probabiliste souhaitée.

6.3.2 Cartes Auto-Organisatrices de Kohonen (SOM)

Ce sont des réseaux a apprentissage non-supervisé qui établissent une carte discrete, ordonnée
topologiquement, en fonction de patterns d’entrée. Le réseau forme ainsi une sorte de treillis dont
chaque noeud est un neurone associé a un vecteur de poids. La correspondance entre chaque vecteur
de poids est calculée pour chaque entrée. Par la suite, le vecteur de poids ayant la meilleure corrélation,
ainsi que certains de ses voisins, vont étre modifiés afin d’augmenter encore cette corrélation. Ainsi,
chaque cellule calcule la distance euclidienne entre le vecteur patron et le vecteur de poids associé a
la cellule dans le tableau.

6.3.3 Les réseaux de Hopfield

Les réseaux de Hopfield sont des réseaux récurrents et entierement connectés. Dans ce type de
réseau, chaque neurone est connecté a chaque autre neurone et il n'y a aucune différenciation entre
les neurones d’entrée et de sortie.

La regle d’apprentissage proposée par Hopfield est basée sur la regle de Hebb. La regle de Hebb
consiste a forcer les poids des liaisons entre les neurones actifs au méme moment. Par contre, les
poids seront diminués si les neurones sont dans des états contraires. Dans le cas de Hopfield, cette
regle est légerement étendue si 1’on considere que deux neurones dans 1’état -1 sont actifs.

Hopfield a utilisé une fonction d’énergie associée au réseau comme outil pour définir des réseaux
récurrents et pour comprendre leurs dynamiques. Ils fonctionnent comme une mémoire associative
non-linéaire et sont capables de trouver un objet stocké en fonction de représentations partielles
ou bruitées. L'application principale des réseaux de Hopfield est I'entrep6t de connaissances mais
aussi la résolution de probléemes d’optimisation. Le mode d’apprentissage utilisé ici est le mode
non-supervisé.

6.3.4 Le Réseau de Anderson (Brain in a Box)

Ce réseau a été congu par James Anderson sous le nom de Brain in a Box afin d’étudier les fonc-
tionnalités du cerveau humain. En d’autres termes, ce réseau essaye de modéliser un comportement
psychologique.

Pour réaliser la phase d’apprentissage, on initialise d’abord les poids a des valeurs faibles. On
présente alors les vecteurs d’exemples en entrée. On propage ainsi la valeur vers la couche in-
termédiaire. La propagation finie, on calcule la différence entre la valeur réelle de 'exemple en sortie

Quelques algorithmes des sciences cognitives Page 35

HEPITA Chapitre 6. Algorithmes des réseaux de neurones

et la valeur calculée. On obtient alors la valeur de correction des poids. On ré-injecte alors cette valeur
calculée en entrée de la couche intermédiaire et on répete le méme processus. Cette phase d’appren-
tissage est répétée un certain nombre de fois, fixe et déterminé a I’avance. Ce parametre joue un role
trés important dans l'erreur d’apprentissage.

6.3.5 Les modeles de Résonance Adaptative

Il s’agit de résoudre le dilemme de stabilité-plasticité. (Comment apprendre nouvelles choses
(plasticité) tout en gardant une stabilité garante d’'une connaissance ni supprimée ni abimée). Les
modeles développés par Carpenter et Grossberg (ART-1, ART-2, ARTMap) dans le cadre de la théorie
de résonance adaptative (ART) essaient de résoudre ce dilemme. Le réseau possede un réservoir de
cellules de sortie qui ne sont utilisées que si nécessaire.

L’algorithme d’apprentissage met a jour les vecteurs prototypes stockés uniquement s’ils sont
suffisamment proches du patron fourni en entrée au réseau. Lorsqu’un patron n’est pas assez proche
des vecteurs prototypes déja présents dans le réseau, une nouvelle catégorie est créée et une cellule
libre y est assignée avec comme vecteur prototype le patron correspondant.

6.4 Les algorithmes d’apprentissage par compétition

6.4.1 Winner Take All (WTA)

A la différence de la regle de Hebb dans laquelle plusieurs neurones peuvent étre activés en sortie,
cet apprentissage n’active qu'un seul neurone. On parle de WTA (winner-take-all), phénomeéne a été
mis en évidence dans le cas de réseau biologique. Ce type d’apprentissage regroupe les données
en catégories, les patrons similaires sont rangés dans la méme classe et représentés par un unique
neurone, en se fondant sur les corrélations des données.

Le WTA simule les mécanismes de compétition existant entre neurones ou populations de neu-
rones. Le modéle courant utilise des groupes de neurones formels dont l'apprentissage est fixé par la
régle de Hebb. L’ajout de liaisons inhibitrices latérales permet de simuler le processus de compétition.
Apres convergence, seul le neurone ayant la plus grande activité reste actif et inhibe tous les autres.

642 LVQ

L’algorithme LVQ est un algorithme d’apprentissage tres utilisé pour la compression de données,
dans le cadre du traitement de la parole, du stockage d'images, de la transmission et de la modélisation.
Il s’agit de représenter un ensemble ou une distribution de vecteurs a 1’aide d"un nombre restreint
de vecteurs prototypes ou d'un livre de codes. Une fois que le livre de codes a été construit et agréé
par le transmetteur et le récepteur, il ne reste alors qu’a transmettre ou stocker l'index du vecteur
prototype correspondant au vecteur de données. Etant donné un vecteur de données, son vecteur
prototype peut étre trouvé en cherchant le vecteur prototype le plus voisin dans le livre des codes.

6.4.3 Les ART

Lesréseaux ART (Adaptative Resonnance Theorie) sont des réseaux a apprentissage par compétition.
Le probleme majeur qui se pose dans ce type de réseaux est le dilemme stabilité/plasticité. En effet,
dans un apprentissage par compétition, rien ne garantit que les catégories formées vont rester stables.
La seule possibilité, pour assurer la stabilité, serait que le coefficient d’apprentissage tende vers zéro,
mais le réseau perdrait alors sa plasticité. Les ART ont été congus spécifiquement pour contourner
ce probléme. Dans ce genre de réseau, les vecteurs de poids ne seront adaptés que si l’entrée fournie
est suffisamment proche, d'un prototype déja connu par le réseau. On parlera alors de résonance. A
I'inverse, si I’entrée s’éloigne trop des prototypes existants, une nouvelle catégorie va alors se créer,
avec pour prototype, I'entrée qui a engendré sa création. Il est a noter qu’il existe deux principaux

Quelques algorithmes des sciences cognitives Page 36

HEPITA Chapitre 6. Algorithmes des réseaux de neurones

types de réseaux ART : les ART-1 pour des entrées binaires et les ART-2 pour des entrées continues.
Le mode d’apprentissage des ART peut étre supervisé ou non.

6.4.4 Réseau a fonction radiale

Les réseaux a fonction radiale (RBF) qui possedent deux couches forment une classe particuliere
de réseaux multi-couches. Chaque cellule de la couche cachée utilise une fonction noyau telle que
la Gaussienne en tant que fonction d’activation. Cette fonction est centrée au point spécifié par le
vecteur de poids associé a la cellule. La position et la largeur de ces courbes sont apprises a partir des
patrons. Il y a, en général, beaucoup moins de fonctions noyaux dans un réseau RBF que de patrons
d’entrée. Chaque cellule de sortie implémente une combinaison linéaire de ces fonctions, 1'idée étant
d’approximer une fonction par un ensemble de fonctions. De ce point de vue, les cellules cachées
fournissent un ensemble de fonctions qui forment une base représentant les patrons d’entrées dans
I'espace couvert par les cellules cachées.

Quelques algorithmes des sciences cognitives Page 37

N
EPITRA Chapitre 7. Forward Algorithms

Chapitre 7

Forward Algorithms

7.1 Algorithmes forward standards de recherche

7.1.1 Recherche en largeur d’abord (Breadth First)

L’algorithme de recherche en largeur d’abord étudie tous les états a une profondeur donnée avant
d’étudier les états qui sont a un niveau plus profond dans 1’arbre de recherche. Cet algorithme utilise
généralement une file initialisée avec un élément : I'état initial. L'état est retiré en avant de la file et on
regarde s’il s’agit du but recherché. Si c’est le cas, la recherche se termine, sinon 1’état est développé
et les états résultants sont ajoutés a la file.

Algorithm 17 Algorithme de recherche en largeur d’abord

1: Q « Etat initial

2: repeat

3: if Q est vide then

4 Retourner erreur

5: else

6: C « Retirer(Q)

7: if C est un but then

8: Retourne C

9: else
10: for chaque N « Successeur(C) do
11: Ajouter(Q, N)
12: end for
13: end if

14: end if
15: until forever

7.1.2 Recherche en profondeur d’abord (Depth First)

L’algorithme de recherche en profondeur d’abord traverse 'espace de recherche en développant
d’abord 1’état le plus profond dans l’arbre de recherche. L'algorithme de base utilise une pile qui est
initialisée avec une seule valeur : 1’état initial. Il se termine lorsque le but recherché est trouvé. En
développant un état, les noeuds successeurs sont empilés.

Quelques algorithmes des sciences cognitives Page 38

N
EPITRA Chapitre 7. Forward Algorithms

Algorithm 18 Algorithme de recherche en profondeur d’abord

1: Empiler(S, Etat Initial)
2: repeat
3: if S est vide then

4: Retourner erreur
5: else
6: C « Depiler(S)
7: if C est un but then
8: Retourne C
9: else
10: for chaque N « Successeur(C) do
11: Empiler(Q, N)
12: end for
13: end if
14: end if

15: until forever

7.1.3 Recherche limitée en profondeur d’abord (Depth First)

L’algorithme de recherche limitée en profondeur est identique a l'algorithme précédent, a la
différence qu’une limite de profondeur est imposée sur les états a étudier. Généralement cette re-
cherche est utilisée lorsque 1’on sait que le but est a une certaine distance de I’état initial, ou lorsqu’'un
but trop éloigné n’a pas d’intérét.

Algorithm 19 Algorithme de recherche limité en profondeur

1: Empiler(S, Etat Initial)
2: repeat
3: if S est vide then

4 Retourner erreur
5: else
6: C « Depiler(S)
7: if C est un but then
8: Retourne C
9: else
10: if Profondeur(C) < Limite then
11: for chaque N « Successeur(C) do
12: Empiler(Q, N)
13: end for
14: end if
15: end if
16: end if

17: until forever

7.1.4 Algorithme de Dijkstra

L’algorithme de Dijkstra résout un probleme du plus court chemin pour un graphe G(V,E) orienté
et connexe dont les poids liés aux arcs sont positifs (> 0).

Le cotit du chemin entre deux noeuds est la somme des cofits des arcs du chemin. Le cotit d'un
arc peut étre vu comme une généralisation de la distance entre ces deux noeuds. Pour une paire
donnée de noeuds s,t dans 1’ensemble des noeuds du graphe, I'algorithme trouve le chemin depuis
s vers t de moindre cofit (c’est a dire le plus court chemin). L’algorithme fonctionne en construisant

Quelques algorithmes des sciences cognitives Page 39

N
EPITRA Chapitre 7. Forward Algorithms

un sous-graphe S tel que la distance entre un noeud v’ (dans S) depuis s est connue pour étre un
minimum dans G. Initialement S contient simplement le noeud s isolé, et la distance de s a lui-méme
vaut zéro. Des arcs sont ajoutés a S a chaque étape :

— en identifiant tous les arcs ei = (vil,vi2) dans G-S tel que vil est dans S et vi2 est dans G.

— puis en choisissant les arcs ej = (vj1,vj2) dans G-S qui donne la distance minimum de ce noeud
vj2 (dans G) depuis s depuis tous les arcs ei. L’algorithme se termine soit quand S devient un arbre
couvrant de G, soit quand tous les noeuds d’intérét sont dans S. La procédure pour ajouter un arc
ej a S conserve la propriété suivante : les distances de tous les noeuds dans S depuis s sont des
minimums connus.

Algorithm 20 Algorithme de Dijkstra

InitialiserSourceSimple(G, s)
S « ensemble vide
Q <« ensemble de tous les noeuds
while Q n’est pas un ensemble vide do
u « ExtraireMinimum(Q)
S—SUu
for chaque noeud v voisin de u do
Relax(u, v, w)
end for
end while

—_
<

L’algorithme de Dijkstra peut-étre mis en oeuvre efficacement en stockant le graphe sous forme de
listes adjacentes et en utilisant une pile comme une file a priorités pour réaliser la fonction Extract-Min.

7.1.5 A* (A-Star)

L’algorithme A* est un des algorithmes les plus utilisés dans la programmation de jeux. Il reprend
I'algorithme de Disjktra mais en ajoutant une analyse d’orientation de la recherche. Au lieu de placer
les points dans la file en fonction de leur vrai poids, ils sont placés en fonction de leur poids plus une
estimation de la distance pour atteindre le point de destination.

La formule utilisée est la suivante : f(n) = g(n) + h(n) ot :

— f(n) est le score du point (c’est lui qui va déterminer sa position dans la file)
— g(n) est le poids du point

— (n) est une estimation du cotit pour atteindre le point de destination.

Ceci permet a 'algorithme de se concentrer sur les points qui ont le plus de chances d’aboutir.

7.1.6 Recherche du meilleur d’abord (Best First)

L’algorithme de recherche du meilleur d’abord utilise une fonction d’évaluation et choisi toujours
I’état qui a obtenu le meilleur score. Pourtant le parcours des états de 1’arbre de recherche est exhaustif
etl’algorithme pourra potentiellement étudier tous les cas possibles. Il utilise un agenda comme dans
les recherches en largeur/profondeur d’abord, mais au lieu d’enlever le premier noeud et de générer
ses successeurs, il va enlever le meilleur noeud, c’est a dire celui qui aura le meilleur score. Les
successeurs de ce noeud seront évalués et ajoutés a la liste.

7.1.7 Profondeur itératif (Iterative Deepening)

La recherche en profondeur itérative combine les avantages de la recherche en profondeur d’abord
et ceux de la recherche en largeur d’abord. Cet algorithme utilise la méme quantité de mémoire que
celui de la recherche en profondeur pour les méme entrées, est complet et optimisé sous certaines

Quelques algorithmes des sciences cognitives Page 40

N
EPITRA Chapitre 7. Forward Algorithms

conditions.

La recherche commence par une recherche en profondeur limitée, et si I’objectif n’est pas trouvé,
on incrémente cette limite (cette incrémentation pouvant étre supérieur a 1). On boucle ensuite jusqu’a
ce qu’on trouve le but.

7.2 Algorithmes forward dérivés du backtracking

721 Le Forward Checking

L’algorithme du forward checking a pour but de répondre au méme problématique que les
algorithmes de backtracking (cf. section backward). Contrairement a ces derniers dont il est dérivé,
il exécute les tests de consistance a la descente. Alors que les algorithmes de backtrack effectuent les
vérifications de contraintes entre la variable courante et les variables passées, le forward checking
effectue les tests de consistances entre la variable courante et les variables restantes qui ne sont pas
encore instanciées. A chaque niveau dans l’arbre de recherche, le domaine des futures variables est
filtré afin que les variables inconsistantes avec l'instantiation courante soient retirées. Le forward
checking est trés efficace grace a sa capacité a déceler les inconstitances tres tot dans la recherche.
Cela dit, il est possible que ces tests soient plus nombreux que ceux des algorithmes de backtracking.

Algorithm 21 Algorithme du Forward Checking

1: procedure ForwARDCHECKING(entier u, echec)
2 if courant > N then

3 solution()

4: retourne (N)

5: end if

6 fori — 0aKdo

7 if domaine[courant][i] then

8

9

continue

: end if
10: v[courant] « i
11: echec « consistent(courant)
12: if fail = 0 then
13: ForwardChecking(courant + 1)
14: end if
15: Restaurer(current)
16: end for
17: Retourne(current - 1)

18: end procedure

7.2.2 Algorithmes hybrides du Forward Checking (FC-BJ et FC-CB])

Le Forward Checking and Backjumping (FC-BJ) et le forward checking and Conflict-Directed
Backjumping (FC-CB]J) integrent le Backjumping au sein de 1’algorithme de Forward Checking.

Contrairement au forward checking qui retourne en arriére de facon chronologique, les dérivés du
forward checking sauvegarde l'information sur les variables qui ont causé une inconsistance. Ensuite,
I'information est utilisée pour déterminer a quel point on effectue le retour-arriere.

De plus des structures héritées du forward checking, ces algorithmes hybrides utilisent les struc-
tures de données des algorithmes de backward checking. FC-BJ utilise le vecteur max_test de B]J,
tandis que FC-CB]J utilise le conf_set de CB]. Les fonctions consistent et restore sont identiques a celles

Quelques algorithmes des sciences cognitives Page 41

N
EPITRA Chapitre 7. Forward Algorithms

du forward checking.

Les dérivés du forward checking essayent de combiner les avantages du forward checking et du
backjumping. Cependant 1’algorithme résultant et complexe et plus difficile a mettre en oeuvre.

Quelques algorithmes des sciences cognitives Page 42

EPITRA Chapitre 8. Backward Algorithms

Chapitre 8

Backward Algorithms

8.1 Simple Backtracking (BT)

Le simple retour arriere, est le plus simple algorithme backward. Plutét que d’explorer de fagon
exhaustive 1’arbre des affectations possibles, cette méthode consiste a tester a chaque assignation un
certain nombre de contraintes. Si ces contraintes sont satisfaites, on continue I'exploration et dans
le cas contraire, on élague de 1’arbre de recherche le noeud courant et ceux qui sont en dessous de
lui puisqu’ils ne correspondent pas aux criteres, enfin on retourne en arriére jusqu’a la prochaine
conformation cohérente. L'algorithme est présenté dans la section 4.2.3 sur la programmation par
contrainte.

8.2 Backjumping (backtracking intelligent)

La différence entre le backtracking et le backjumping (B]) est que le simple retour arriere effectue
son retour a la variable la plus récemment instanciée. Au contraire, dans1’algorithme du backjumping,
on retourne a la plus haute variable en conflit avec la variable courante. On utilise pour cela un vecteur
max_test[i] qui sauvegarde la derniere variable vérifiée a I'instantiation courante de Xi. Il suffit alors
de sauter jusqu’a la variable max_test[current].

Algorithm 22 Algorithme du Backjumping

1: procedure BackjumrinGg(entier i, saut)
2 if courant > N then

3 solution()

4 retourne (N)

5: end if

6 max_test[courant] « 0

7 fori —0aKdo

8 v[courant] « i

9 if consistent(courant) then

10: saut < Backjumping(courant + 1)
11: if saut # courant then

12: retourne saut

13: end if

14: end if

15: end for

16: Retourne(max_test[courant])

17: end procedure

Quelques algorithmes des sciences cognitives Page 43

N
EPITRA Chapitre 8. Backward Algorithms

8.3 Conflict-Directed Backjumping (CB]J)

L’algorithme de Conflict-Directed Backjumping est une extension du backjumping vu dans la
section précédente. Il utilise I'information sur les conflits entre 'instanciation courante et les futures
variables. Chaque variable a son propre ensemble de conflits contenant les variables passées et
échouant aux tests de l'instantiation courante. Ainsi, le Conflict-Directed Backjumping effectue un
saut a la plus haute variable de I’ensemble de conflits. Il est également possible d’effectuer plusieurs
sauts, afin qu’apres le premier, il soit possible de continuer un backjumping des conflits. Cela permet
potentiellement une réduction significative du parcours.

Algorithm 23 Algorithme du Conflict-Directed Backjumping

1. procedure CBJ(entier h, i, saut)
2 if courant > N then

3 solution()

4 retourne(N)

5: end if

6 vider(conf_set[courant])

7 max_test[courant] « 0

8 fori—0aKdo

9 v[courant] « i

10: if consistent(courant) then

11: saut < CBJ(courant + 1)

12: if saut # courant then

13: retourne saut

14: end if

15: end if

16: end for

17: h « max(conf_set[current])

18: Fusionne(conf_set[h], conf_set[current])

19: Retourne(h)
20: end procedure

8.4 Graph-Based Backjumping (GB]J)

Comme, le précédent algorithme, le Graph-Based Backjumping est une extension du backjum-
ping, et il utilise la connaissance sur le graphe de contrainte. L’algorithme retourne en arriere jusqu’a
la plus haute variable connectée au noeud courant. Cela signifie que le saut s’effectue jusqu’a la plus
haute variable qui est connectée par une contrainte non triviale.

Par contre, cet algorithme n’est utile que dans les cas ot le graphe est relativement dispersé. Si le
graphe est presque complet il sera préférable d’'implémenter un simple backtracking.

Quelques algorithmes des sciences cognitives Page 44

4N
EPITR

Chapitre 8. Backward Algorithms

Algorithm 24 Algorithme du Graph-Based Backjumping

1: procedure GBJ(entier h, i, saut)
2 if courant > N then

3 solution()

4 retourne(N)

5: end if

6 vider(conf_set[courant])

7 max_test[courant] « 0

8 fori—0aKdo

9 v[courant] «i

10: if consistent(courant) then
11: saut < GBJ(courant + 1)
12: if saut # courant then
13: retourne saut

14: end if

15: end if

16: end for

17: Fusionne(P, parents(current))

18: Supprimer(h, P)
19: Retourne(h)
20: end procedure

8.5 Backmarking

L'objectif de l'algorithme du backmarking est de réduire le nombre de test de consistance. Il
parait intuitif qu’il y ait beaucoup de redondance dans les tests effectués par I’algorithme du backtra-
cking, et un grand nombre peuvent étre éliminés. Les combinaisons de marquage sont basées sur les

observations suivantes :

— Si @ un noeud récent, une instanciation donnée a été vérifiée et que cette instantiation a
échoué a cause d'un conflit avec une variable précédente n’ayant pas changg, alors il échouera
systématiquement par la suite. Par conséquent, tous ces tests de consistance peuvent étre évités

— De méme si a un noeud récent, une instanciation a été testée avec succes dans ces méme
conditions, alors il n’est pas nécessaire de vérifier 'instanciation qu’avec les instantiations les plus

récentes qui ont changé.

Quelques algorithmes des sciences cognitives

Page 45

N
EPITRA Chapitre 8. Backward Algorithms

Algorithm 25 Algorithme du Backmarking

1: procedure BM(entier h, i)

2 if courant > N then

3 solution()

4 retourne(N)

5: end if

6 vider(conf_set[courant])
7 max_test[courant] « 0
8 fori—0aKdo

9 v[courant] «i

10: if consistent(courant) then

11: BM(courant + 1)

12: end if

13: end forState h « courant-1 State mbl[courant] < h
14: fori — h+1aNdo

15: mbl[i] « min([i], h)

16: end for
17: Retourne(h)
18: end procedure

8.6 Algorithmes hybrides du Backmarking (BM-BJ, BM-CB]J, BM-GB]J,
BM]2, BM-CBJ...)

Il existe deux algorithmes principaux utilisant le systeme du backjumping dans l’algorithme du
backmarking. Ce sont les algorithmes Backmarking and Backjumping (BM-BJ ou BMJ) et Backmarking
and Conflict-Directed Backjumping (BM-CB]J). Ces algorithmes sont similaires a celui du backmar-
king mais ils intégrent 1'information du marquage pour décider qu’elle est la meilleure variable a
laquelle il faut effectuer un saut.

D’autres algorithmes hybrides existent par exemple BM-GBJ qui combine le Backmarking et le
Graph-Based Backjumping. Nous ne le verrons pas en détail ici, cet algorithme étant relativement
complexe sans étre pour autant plus efficace que ceux étudié précédemment.

L’ efficacité de ces algorithmes hybrides est d’ailleurs souvent relativement problématique. L'al-
gorithme de Backmarking and Backjumping par exemple n’atteint pas la performance de chacun des
algorithmes de base en terme de tests de consistance. Ainsi pour résoudre ce probléeme, un Back-
marking and Backjumping modifié a été mis au point (BMJ2). Cet algorithme résout ce probleme en
utilisant un vecteur de deux dimensions plutdt qu’une dimension. Le nouveau vecteur de taille n x
m, ol n représente le nombre de variable et m la taille du plus large domaine. La taille mémoire est
raisonnable puisque le BMJ utilise déja un vecteur n x m.

Une modification analogue a été effectuée sur le BM-CB]J, ce qui a permis de produire BM-CBJ2,
utilisant également un vecteur de dimension 2.

Quelques algorithmes des sciences cognitives Page 46

EPITRA Chapitre 9. Algorithmes d’élagage

Chapitre 9

Algorithmes d’élagage

Elaguer : Dépouiller un arbre des branches inutiles, retrancher les parties inutiles de.

Nous avons déja vu dans le corps de ce rapport un grand nombre de techniques d’élagage, qu’il
s’agisse d’heuristiques ou d’algorithmes, nous invitons le lecteur a reconsulter notamment le chapitre
sur la programmation par contraintes qui est un bon exemple de techniques d’élagage en domaines
finis. Nous allons présenter ici quelques algorithmes classiques supplémentaires.

9.1 Algorithmes de la théorie des jeux

Introduction

Les jeux a deux joueurs font partie des applications classiques en programmation symbolique.
C’est un bon exemple de résolution de problemes pour au moins deux raisons :

— le nombre de solutions a analyser pour obtenir le meilleur coup nécessite des méthodes autres
que la force brute : aux échecs le nombre de coups possibles est en moyenne de 30 et une partie se
joue en une quarantaine de coups pour chaque joueur ; ce qui donne quelques 30%° positions pour
explorer 1’arbre complet d"une partie!

— la qualité d"une solution est facilement vérifiable, en particulier il est possible de tester la qualité
de la solution proposée par un programme en utilisant un autre programme.

Supposons que 1'on puisse utiliser une exploration totale de toutes les parties possibles a partir
d’une position légale du jeu. Un tel programme a besoin d'une fonction de génération des coups
légaux a partir de cette position et d"une fonction d’évaluation donnant un score a la position donnée.
La fonction d’évaluation donne un score maximal a une position gagnante et un score minimal a
une position perdante. A partir de la position initiale, on peut donc construire ’arbre de toutes les
variantes de la partie, ott chaque noeud correspond a une position, ses fils aux positions suivantes
obtenues en ayant joué un coup et les feuilles aux positions gagnantes, perdantes ou nulles. Une fois
cet arbre construit, son exploration permet de déterminer s’il existe un chemin menant a la victoire,
ou a une position nulle le cas échéant. Le chemin de plus petite longueur peut alors étre choisi pour
amener au résultat voulu.

Comme la taille d'un tel arbre est en regle générale trop grande pour étre envisageable, il est
nécessaire d’en limiter sa construction. La premiére possibilité est de limiter la profondeur de re-
cherche, c’est-a-dire le nombre de coups et de réponses a évaluer. On réduit ainsi la profondeur de
I’arbre donc sa taille. Dans ce cas on atteint rarement des feuilles a moins d’étre en fin de partie.

D’autre part, nous pouvons essayer de limiter le nombre de coups engendrés pour pouvoir les
évaluer plus finement. Pour cela, nous tentons de n’engendrer que les coups semblant les plus favo-
rables et de les examiner en commencant par les meilleurs. Cela permet ainsi d’élaguer rapidement
des branches entiéres de 1’arbre.

Quelques algorithmes des sciences cognitives Page 47

N
EPITRA Chapitre 9. Algorithmes d’élagage

Minimax

L’algorithme minimax, di & Von Neumann, est un algorithme de recherche en profondeur, avec
une profondeur limitée. Il nécessite d"utiliser :

— une fonction de génération des coups légaux a partir d"une position

— une fonction d’évaluation d"une position de jeu

A partir d’une position du jeu, 'algorithme explore I'arbre de tous les coups légaux jusqu’a la pro-
fondeur demandée. Les scores des feuilles de I’arbre sont alors calculés par la fonction d’évaluation.
Un score positif indique une bonne position pour le joueur A, un score négatif une mauvaise position
pour le joueur A donc une bonne position pour le joueur B. Selon le joueur qui joue, le passage d"une
position a une autre est maximisante (pour le joueur A) ou minimisante (pour le joueur B). Les joueurs
essaient de jouer les coups les plus profitables pour eux-mémes. En cherchant le meilleur coup pour
le joueur A, la recherche en profondeur 1 cherchera a déterminer le coup immédiat qui maximise le
score de la nouvelle position.

L’exploration en profondeur 1 est en regle générale insuffisante, car on ne tient pas compte de
la réponse de 1’adversaire. Cela produit des programmes cherchant le gain immédiat de matériel
(comme la prise d"une reine aux échecs), sans s’apercevoir que les pieces sont protégées ou que la po-
sition devient perdante (gambit de la reine pour faire mat). Une exploration de profondeur 2 permet
de s’apercevoir du contrecoup.

Dans la plupart des jeux, il est possible de faire lanterner son adversaire, en le faisant jouer a
coups forcés, dans le but d’embrouiller la situation en espérant qu’il commette une faute. Pour cela la
recherche de profondeur 2 est tres insuffisante pour le coté tactique du jeu. Le co6té stratégique est ra-
rement bien exploité par un programme car il n’a pas la vision de la probable évolution de la position
en fin de partie. La difficulté de profondeur plus grande provient de I’explosion combinatoire. Par
exemple aux échecs, I'exploration de 2 profondeurs supplémentaires apporte un facteur d’environ
mille fois plus de combinaisons (30 * 30). Donc si on cherche a calculer une profondeur de 10, on
obtiendra environ 5'4 positions, ce qui est bien entendu trop. Pour cela on essaie d’élaguer l’arbre de
recherche.

La fonction d’évalutation d'une position du jeux est une heuristique qu’il convient bien stir
d’adapter a chaque type dejeux. L'algorithme donné ci-aprés repose donc sur une exploration partielle
de l’espace des coups possibles. Cette exploration se fait a une profondeur donnée. Evidemment plus
la profondeur est importante, plus le coup sera bon et plus long sera le calcul. On associe généralement
a un noeud de fin de partie une valeur positive pour une victore de A, 0 pour un match nul et une
valeur négative pour une victoire de B. Pour les noeuds terminaux qui ne sont pas des noeuds de fin de
partie, on fait intervenir notre fonction d’évaluation qui doit étre soigneusement choisie pour refléter
au mieux les caractéristiques du jeux. La construction de minimax se fait donc de facon ascendante
en remontant a partir des feuilles. Cela repose sur 'idée que ’adversaire joue également de facon a
maximiser sa propre fonction d’évaluation et donc a minimiser celle de ’adversaire.

Quelques algorithmes des sciences cognitives Page 48

N
EPITRA Chapitre 9. Algorithmes d’élagage

Algorithm 26 Minimax

1: function Minimax(Configuration S)

2 if S est une feuille then

3 return evaluation(S)

4 end if

5: if S est un noeud MAX then

6 return Max(Minimax(S”)) > S’ les fils de S
7 end if

8 if S est un noeud MIN then

9 return Min(Minimax(5”)) > S les fils de S
10: end if

11: end function

Negmax

Il s’agit d’une variante de Minimax qui a été développé par Donald Knuth. Le principe de cet
algorithme consiste a éviter de traiter différement les noeuds MIN et MAX. L'idée en est trés simple
et s’exprime ainsi :

Algorithm 27 Negmax

1: function NeEcmax(Configuration S)

2 if S est une feuille then

3 return evaluation(S)

4: else

5 return Max(-Negmax(51), ..., -Negmax(Sn)) >S1...Sn les fils de S
6 end if

7: end function

AlphaBeta

L’algorithme minimax effectue une exploration compléte del’arbre de recherche jusqu’a un niveau
donné, alors qu'une exploration partielle de I’arbre pourrait suffire. Il suffit en effet, dans I’exploration
en profondeur d’abord et de gauche a droite, d’éviter d’examiner des sous-arbres qui conduiront a
des configurations dont la valeur ne contribuera stirement pas au calcul du gain a la racine de I’arbre.
L’algorithme alpha-beta est donc une optimisation de MiniMax, qui coupe des sous-arbres des que
leur valeur devient inintéressante aux fins du calcul de la valeur MiniMax du jeu. On s’intéressera
donc, sur chaque noeud, en plus de la valeur, a deux autres quantités, nommées alpha et beta, qui
seront utilisées pour calculer la valeur du noeud.

alpha d’un noeud :

C’est une approximation par le bas de la vraie valeur du noeud. Elle est égale a la valeur sur les
feuilles, et est initialisée a -infini ailleurs. Ensuite, sur les noeuds joueur elle est maintenue égale a
la plus grande valeur obtenue sur les fils visités jusque la, et elle est égale a la valeur alpha de son
prédécesseur sur les noeuds opposant.

beta d"un noeud :

C’est une approximation par le haut de la vraie valeur du noeud. Elle est égale a la valeur sur les
feuilles, et est initialisée a +infini ailleurs. Ensuite, sur les noeuds opposant elle est maintenue égale
a la plus petite valeur obtenue sur les fils visités jusque la, et elle est égale a la valeur beta de son
prédécesseur sur les noeuds joueur.

Quelques algorithmes des sciences cognitives Page 49

N
EPITRA Chapitre 9. Algorithmes d’élagage

L’algorithme AlphaBeta peut étre décrit par le pseudo-code suivant :

Algorithm 28 AlphaBeta

Require: ici A est toujours inférieur a B
1: function ALrHABETA(P, A, B)

2: if P est une feuille then
3: return evaluation(P)
4: else
5: Initialiser Alpha de P a -Infini et Beta de P a +Infini
6: if P est un noeud Min then
7: for Tous les fils Pi de P do
8: Val = AlphaBeta(Pi, A, Min(B, Beta de P))
9: Beta de P = Min(Beta de P, Val)
10: if A > Beta de P then > Ceci est la coupure alpha
11: return Beta de P
12: end if
13: end for
14: return Beta de P
15: else
16: for Tous les fils Pi de P do
17: Val = AlphaBeta(Pi, Max(A, Alpha de P), B)
18: Alpha de P = Max(Alpha de P, Val)
19: if Alpha de P > B then > Ceci est la coupure beta
20: return Alpha de P
21: end if
22: return Alpha de P
23: end for
24: end if
25: end if

26: end function

On sait que la véritable valeur MiniMax v d"un noeud est encadrée par alpha et beta (i.e. alpha
< v <beta), et si on appelle la fonction AlphaBeta avec les valeurs (P-infini,+infini) on obtient
précisément Minimax(P). AlphaBeta permets assez souvent de doubler la profondeur d’exploration
d'un arbre a parité de ressources, par rapport a Minimax. Contrairement a minimax, le calcul des
valeurs de AlphaBeta se fait de facon a la fois ascendante et descendante.

SSS*

I s’agit d’un algorithme relativement peu connu, en tous cas nettement moins connu que l'algo-
rithme AlphaBeta. Il a pourtant été démontré qu'il lui est théoriquement supérieur, dans le sens ou
il n’évaluera pas un noeud si AlphaBeta ne I’examine pas, tout en élaguant éventuellement quelques
branches explorées par AlphaBeta. Cette qualité supplémentaire se paie, SSS étant un gros consom-
mateur de mémoire.

Définissons rapidement une stratégie et une stratégie partielle. Etant donné un arbre de jeu J, on
appelle stratégie pour le joueur Max, un sous-arbre de] qui contient la racine de J, dont chaque noeud
Max a exactement un fils, dont chaque noeud Min a tous ses fils. Etant donné un arbre de jeu], on
appelle stratégie partielle pour le joueur Max, un sous-arbre de J qui contient la racine de J, dont
chaque noeud Max a au plus un fils.

Une stratégie indique au joueur Max ce qu’il doit jouer dans tous les cas. Si Max respecte une

Quelques algorithmes des sciences cognitives Page 50

N
EPITRA Chapitre 9. Algorithmes d’élagage

stratégie, il est assuré d’aboutir a une des feuilles de stratégie. La valeur d'une stratégie pour Max est
le minimum des valeurs des feuilles de cette stratégie, gain assuré contre toute défense de Min. Le
but de SS5* est d’exhiber la stratégie de valeur maximum pour Max.

L’algorithme SSS* explore un espace d’état dont chaque noeud est une stratégie partielle, en utili-
sant une approche meilleur d’abord avec une heuristique minorante qui sera la valeur des stratégies
partielles et qui garantit I'optimalité. A partir du moment o1 une sous-stratégie optimale est établie,
la stratégie optimale est marquée, et toutes les sous-stratégies sous-optimales supprimées.

On dira qu'un noeud est résolu, si la stratégie complete issue de ce noeud a été déterminée. Un
noeud qui n’est pas résolu est vivant. Un état sera donc un triplet (noeud, type, valeur). La liste G
des états générés non développés sera triée par odre décroissant des valeurs. Nous ne donnons pas
le pseudo-code ici mais il se trouve dans [23].

SCOUT

Nous décrirons rapidement 1’algorithme de Scout, élaboré par J. Pearl comme outil théorique. Son
efficacité est, en général, inférieure a celle d’AlphaBeta, pour une consommation mémoire du méme
ordre. Il peut toutefois lui étre supérieur. Scout repose sur idée fort simple : si 'on disposait d'un
moyen efficace pour comparer (sans nécessairement la déterminer) la valeur minimax d"un noeud
a une valeur donnée, une quantité importante de recherche pourrait étre évitée. Considérons par
exemple un noeud Max n, ayant deux fils : f;, dont la valeur v est connue, et f,. Si 'on sait que la
valeur de f; est inférieure a v, il est inutile d’explorer la branche de f;.

Scout s’appuie donc sur deux procédures simples : la premiere, appelée Test permet de vérifier
si la valeur d'un noeud n est strictement supérieure (ou supérieure ou égale) a une valeur donnée v.
Nous désignerons par h la fonction heuristique.

La seconde, Eval, utilise Test et applique le principe donné plus haut pour calculer la valeur mi-
nimax d'un arbre de jeu. Elle prend en parametre un noeud n. Il pourrait sembler que, du fait de la
redondance éventuelle des évaluations, lorsque Test ne permet pas la coupure, Scout devrait étre trés
inférieur a AlphaBeta, voire méme a minimax. Une étude mathématique du comportement asymp-
totique de Scout montre un comportement identique a AlphaBeta pour des profondeurs élevées. Le
pseudo-code se trouve également dans [23].

9.2 A*

A* est le nom d'un algorithme générique utilisé dans le cadre des problemes combinatoires et
d’ordonnancement. Il s’agit d'une extension du célebre algorithme de Djikstra. A la base, 1 algorithme
A* était utilisé pour résoudre les problémes de puzzle (résolution a base de matrices). Créé en 1968,
il a depuis évolué en de nombreuses variantes, et est maintenant utilisé aussi bien pour résoudre des
labyrinthes complexes, le cheminement d un robot dans un terrain inconnu, les jeux sur échiquiers
(échecs, dames, jeu de go), les jeux de carte (FreeCell), que pour résoudre les problemes de PathFin-
ding dans les jeux 2D et 3D.

Il reprend 'algorithme de Dijkstra mais en ajoutant une analyse d’orientation de la recherche. Au
lieu de placer les points dans la file en fonction de leur vrai poids, ils sont placés en fonction de leur
poids plus une estimation de la distance pour atteindre le point de destination suivant la formule
f(n) = g(n) + a.h(n). Ou f(n) est le score du point (c’est lui qui va déterminer sa position dans la file),
g(n) est le poids du point, h(n) est une estimation du cotit pour atteindre le point de destination, et
a une constante donnant I'importance de h(n). Cela permet a l'algorithme de se concentrer sur les
points qui ont le plus de chance d’aboutir. La recherche se fait vers le point de destination tout en
conservant une approche optimale. Pour h(n), plusieurs méthodes existent comme celle de calculer la

Quelques algorithmes des sciences cognitives Page 51

N
EPITRA Chapitre 9. Algorithmes d’élagage

distance exacte ou d’utiliser la distance de Manhattan. C’est une fonction f(n) bien choisie qui permet
al'élagage d’étre performant.

Globalement , il est certain que pour étre sur d’obtenir le meilleur chemin, la méthode de I’A*
est nettement la meilleure. Aprés, il existe plusieurs facons de l'implémenter en variant la formule
d’évaluation, la structure contenant les noeuds explorés (pile de priorité, arbre binaire...).

9.3 Programmation linéaire

Nous ne nous étendrons pas sur le sujet mais en quelques mots disons que la forme classique
d’un probléme de programmation linéaire est la suivante :

— maximiser une forme linéaire de n variables x1...x,

— les variables sont soumises a m contraintes linéaires de la forme Z;l:l a;jxj <bj;i=1,..,m

— les variables sont soumises a n contraintes de non négativité : x; > 0

Le probleme peut également étre résolu dans le cas ot il faut minimiser la forme linéaire ou que
les variables sont contraintes a étre non positives. D’autres problemes peuvent étre mis sous cette
forme standard.

Les n-uplets qui satisfont les contraintes s’appellent solutions réalisables du probleme. Ce sont les
coordonnées des points intérieurs au polyedre des contraintes.

9.3.1 L’algorithme du Simplexe

L’idée de l'algorithme du Simplexe est de passer itérativement d’un sommet du polyedre des
contraintes & un sommet adjacent de facon a augmenter la valeur de la fonction a optimiser jusqu’a
trouver un sommet o1 le maximum est atteint. Il s’agit ici d'une forme d’élagage de domaine. Son
fonctionnement est assez proche d'une élimination de Gauss applicable a des inégalités.

Quelques algorithmes des sciences cognitives Page 52

N
EPITRA Bibliographie

Bibliographie

[1] Iterative Deepening Search, 2004. wurl : http://ai.squeakydolphin.com/wiki.php?pagename=
AIAWiki.IterativeDeepeningSearch.

[2] MutiAgent Systems, 2004. url : http://www.multiagent.com/.
[3] UMBC AgentWeb, 2004. url : http://www.csee.umbc.edu/aw/.

[4] Richard Baron. Réseaux de Neurones Artificiels, 1997. url : http://www.univ-st-etienne.fr/
creuset/personnel /baron/.

[5] Yoshua Bengio. Algorithmes d’apprentissage, 2000. url : http://www.iro.umontreal.ca/
“"bengioy/ift6266/.

[6] Pierre Berlandier. Etude et réalisation d'un ensemble de primitives pour la satisfaction de
contraintes en domaines finis, Janvier 1991.

[7] Olivier Boissier. Cours DEA - Systemes Multi-Agent, 2000. url : http://www.emse. fr/ boissier/
enseignement/sma/.

[8] Jean Bénech. Les agents, 1999. url : http://jbenech. free.fr/old_site/agents/.

[9] Michele Soria Christine Froidevaux, Marie-Claude Gaudel. Types de données et Algorithmes.
McGraw-Hill, 1992.

[10] Daniel D. Corkill. Blackboard Systems, 1991. url : http://www.bbtech.com/papers/ai-expert.
pdf£.

[11] Leiserson Cormen. Algorithme de Dijkstra, 2002. url : http://fr.wikipedia.org/wiki/
Algorithme_de_Dijkstra.

[12] Marc-Michel Corsini. Réseaux de neurones artificiels : une introduction, 1998. url : http://www.
scico.u-bordeaux?2. fr/"corsini/Pedagogie/ANN/main/main.html.

[13] Patrice Dargenton. Configuration d’un réseau de neurones avec un méta-réseau de neurones, 2001. url :
http://patrice.dargenton. free.fr/ia/ialab/rnautoconfigurant.html.

[14] Francois Denis. Systemes experts, 2002. url : http://www.grappa.univ-1ille3. fr/polys/se/
index.html.

[15] RobertB. Doorenbos. Production Matching for Large Learning Systems. PhD thesis, Carnegie Mellon
University PA, January 1995.

[16] Francoise Fabret. Optimisation du Calcul Incrémentiel dans les Langages de Regles pour Bases de
Données. PhD thesis, These de Doctorat de 1’'Université de Versailles, 1994.

[17] Jacques Ferber. Les systemes multi-agents. INTEREDITIONS, 1996.

[18] Emmanuel Fougeras. Pathfinding : algorithme de parcours, 2003. url : http://www.
vieartificielle.com/article/index.php?action=article&id=178.

[19] S. Garlatti. Les systémes a base de regles.
[20] GBBopen. Annotated Blackboard-System Bibliography, 2003. url : http://www.bbtech.com.

[21] Terry H. Blackboard Technology, 2002. url : http://www.pcai.com/web/ai_info/blackboard_
technology.html.

[22] Michel Jaczinski. Le raisonnement a partir de cas, 2001. url : http://www-sop.inria. fr/axis/
people/Michel.Jaczynski/rapc-fra.htm.

Quelques algorithmes des sciences cognitives Page 53

http://ai.squeakydolphin.com/wiki.php?pagename=AIAWiki.IterativeDeepeningSearch
http://ai.squeakydolphin.com/wiki.php?pagename=AIAWiki.IterativeDeepeningSearch
http://www.multiagent.com/
http://www.csee.umbc.edu/aw/
http://www.univ-st-etienne.fr/creuset/personnel/baron/
http://www.univ-st-etienne.fr/creuset/personnel/baron/
http://www.iro.umontreal.ca/~bengioy/ift6266/
http://www.iro.umontreal.ca/~bengioy/ift6266/
http://www.emse.fr/~boissier/enseignement/sma/
http://www.emse.fr/~boissier/enseignement/sma/
http://jbenech.free.fr/old_site/agents/
http://www.bbtech.com/papers/ai-expert.pdf
http://www.bbtech.com/papers/ai-expert.pdf
http://fr.wikipedia.org/wiki/Algorithme_de_Dijkstra
http://fr.wikipedia.org/wiki/Algorithme_de_Dijkstra
http://www.scico.u-bordeaux2.fr/~corsini/Pedagogie/ANN/main/main.html
http://www.scico.u-bordeaux2.fr/~corsini/Pedagogie/ANN/main/main.html
http://patrice.dargenton.free.fr/ia/ialab/rnautoconfigurant.html
http://www.grappa.univ-lille3.fr/polys/se/index.html
http://www.grappa.univ-lille3.fr/polys/se/index.html
http://www.vieartificielle.com/article/index.php?action=article&id=178
http://www.vieartificielle.com/article/index.php?action=article&id=178
http://www.bbtech.com
http://www.pcai.com/web/ai_info/blackboard_technology.html
http://www.pcai.com/web/ai_info/blackboard_technology.html
http://www-sop.inria.fr/axis/people/Michel.Jaczynski/rapc-fra.htm
http://www-sop.inria.fr/axis/people/Michel.Jaczynski/rapc-fra.htm

N
EPITRA Bibliographie

[23] Thomas Schiex Jean-Marc Alliot. Intelligence Artificielle et Informatique Théorique, 1993.

[24] Grzegorz Kondrak. A Theoretical Evaluation of Selected Backtracking Algorithms, 1994. url : http:
//citeseer.nj.nec.com/21227 .html.

[25] Rachid LADJAD]. Les réseaux de neurones, 2003. wurl : http://etudiant.univ-mlv.fr/
“"rladjadj/.

[26] René Lalement. Cours de programmation, 1999. url : http://cermics.enpc. fr/polys/infol/
main/.

[27] Luc Lamontagne Guy Lapalme. Raisonnement a base de cas textuels : état de 1’art et perspectives.
Revue de l'intelligence artificielle, X :1 a X, 2002.

[28] Steven M. LaValle. Planning Algorithms, 2004. url : http://msl.cs.uiuc.edu/planning/.
[29] Neil Madden. Optimising rete for low-memory, multi-agent systems, 2003.
[30] neural nets. FAQ comp.ai.neural-nets, 2002. url : ftp://ftp.sas.com/pub/neural /FAQ.html.

[31] Emmanuel CHAILLOUX Pascal MANOURY Bruno PAGANO. Développement d’applications avec
OCAML, 2003. url : http://www.pps. jussieu. fr/Livres/ora/DA-OCAML/book-oral6l.html.

[32] PMSI. Réseaux de neurones : formation avancée, 2002. url : http://www.pmsi.fr/neurini2.htm.

[33] A.Revel. Ingénierie de la cognition, 2001. url : http://www.etis.ensea.fr/ revel/html/cours
IA/.

[34] Brugger Rolf. Multi-Agents Architecture, 1996. url : http://www-iiuf.unifr.ch/ brugger/
papers/95_cidre/cidre/node26.html.

[35] Richard Sinn. Blackboard Technology. url : http://www.openloop.com/softwareEngineering/
patterns/architecturePattern/arch_Blackboard.htm.

[36] Christine Solnon. Programmation par contraintes, 2003. url : http://www710.univ-1lyonl. fr/
“csolnon/Site-PPC/e-miage-ppc-som.htm.

[37] Amrudee Sukpan. A Survey on Constraint Satisfaction Problems, 2002. url : http://www2.cs.
uregina.ca/"sukpanla/csp/csp.htm.

[38] Ronald L. Rivest Clifford Stein Thomas H. Cormen Charles E. Leiserson. Introduction a I’algorith-
mique - 2eme édition. Dunod, 2002.

[39] Marc Torrens. Constraint Satisfaction Problems, 1997. url : http://liawww.epfl.ch/ " torrens/
Project/project/node8.html.

Quelques algorithmes des sciences cognitives Page 54

http://citeseer.nj.nec.com/21227.html
http://citeseer.nj.nec.com/21227.html
http://etudiant.univ-mlv.fr/~rladjadj/
http://etudiant.univ-mlv.fr/~rladjadj/
http://cermics.enpc.fr/polys/info1/main/
http://cermics.enpc.fr/polys/info1/main/
http://msl.cs.uiuc.edu/planning/
ftp://ftp.sas.com/pub/neural/FAQ.html
http://www.pps.jussieu.fr/Livres/ora/DA-OCAML/book-ora161.html
http://www.pmsi.fr/neurini2.htm
http://www.etis.ensea.fr/~revel/html/cours_IA/
http://www.etis.ensea.fr/~revel/html/cours_IA/
http://www-iiuf.unifr.ch/~brugger/papers/95_cidre/cidre/node26.html
http://www-iiuf.unifr.ch/~brugger/papers/95_cidre/cidre/node26.html
http://www.openloop.com/softwareEngineering/patterns/architecturePattern/arch_Blackboard.htm
http://www.openloop.com/softwareEngineering/patterns/architecturePattern/arch_Blackboard.htm
http://www710.univ-lyon1.fr/~csolnon/Site-PPC/e-miage-ppc-som.htm
http://www710.univ-lyon1.fr/~csolnon/Site-PPC/e-miage-ppc-som.htm
http://www2.cs.uregina.ca/~sukpan1a/csp/csp.htm
http://www2.cs.uregina.ca/~sukpan1a/csp/csp.htm
http://liawww.epfl.ch/~torrens/Project/project/node8.html
http://liawww.epfl.ch/~torrens/Project/project/node8.html

	1 Introduction
	2 Systèmes à base de connaissances & Techniques d'implémentation de RETE
	2.1 Intérêt
	2.2 Systèmes à base de connaissances
	2.2.1 Raisonnement par cas
	2.2.2 Systèmes experts

	2.3 Implémentation de RETE
	2.3.1 Rappels
	2.3.2 Techniques d'implémentation
	2.3.3 Variantes & Optimisations de RETE

	3 Algorithmes des Blackboards
	3.1 Présentation des Blackboards
	3.2 Modèle HEARSAY-II (HSII)
	3.2.1 Stratégie standard pour la résolution de problème standard
	3.2.2 Auto-activation des sources de connaissances
	3.2.3 Agenda-based control mechanism
	3.2.4 Contrôle du système BlackBoard
	3.2.5 Mécanismes de contrôle supplémentaires dans le modèle Hearsay-II

	3.3 Autres Architectures de contrôle
	3.3.1 HASP/SIAP : Contrôle basé sur les évènements
	3.3.2 CRYSALIS : Contrôle hiérarchique
	3.3.3 Architecture Blackboard Goal-Directed
	3.3.4 BB1
	3.3.5 Modèle basé sur une planification incrémentale
	3.3.6 L'architecture channelized, parameterized
	3.3.7 ATOME : Contrôle hybride multiple
	3.3.8 CASSANDRA : Contrôle Blackboard distribué
	3.3.9 RESUN : Planification pour résoudre les sources d'incertitude

	4 Algorithmes de programmation par contraintes
	4.1 Présentation et notations
	4.2 Algorithmes
	4.2.1 Commentaires liminaires
	4.2.2 Génère et Teste - Generate and Test (GT)
	4.2.3 Simple retour arrière - Backtracking (BT)
	4.2.4 Anticipation par noeud - Node Consistency (NC)
	4.2.5 Anticipation par arc - Arc Consistency (AC)
	4.2.6 Path Consistency (PC)
	4.2.7 Combinaison de recherche systématique et techniques de consistance
	4.2.8 Améliorations de la recherche
	4.2.9 Ordre des valeurs
	4.2.10 Résolution des MCSP

	5 Algorithmes des systèmes multi-agents
	5.1 Présentation des agents et des systèmes multi-agents
	5.2 Algorithmes de contrôle
	5.2.1 Agents Réactifs
	5.2.2 Agents délibératifs
	5.2.3 Agents BDI

	5.3 Algorithmes de recherche dans les systèmes à agents
	5.4 La communication entre agents
	5.4.1 KQML
	5.4.2 ACL-FIPA

	5.5 La négociation
	5.5.1 Présentation
	5.5.2 Négociation aux enchères
	5.5.3 Allocation des tâches par réseau contractuel
	5.5.4 Allocation des tâches par redistribution
	5.5.5 Négociation heuristique
	5.5.6 Négociation par argumentation

	6 Algorithmes des réseaux de neurones
	6.1 Présentation des réseaux de neurones
	6.2 Les réseaux feed-forward
	6.2.1 Perceptron simple (ou monocouche)
	6.2.2 Rétro-Propagation (back propagation)
	6.2.3 Adaline
	6.2.4 Le perceptron multicouches
	6.2.5 Analyse de discriminants linéaires

	6.3 Les réseaux feed-back
	6.3.1 Apprentissage de Boltzmann
	6.3.2 Cartes Auto-Organisatrices de Kohonen (SOM)
	6.3.3 Les réseaux de Hopfield
	6.3.4 Le Réseau de Anderson (Brain in a Box)
	6.3.5 Les modèles de Résonance Adaptative

	6.4 Les algorithmes d'apprentissage par compétition
	6.4.1 Winner Take All (WTA)
	6.4.2 LVQ
	6.4.3 Les ART
	6.4.4 Réseau à fonction radiale

	7 Forward Algorithms
	7.1 Algorithmes forward standards de recherche
	7.1.1 Recherche en largeur d'abord (Breadth First)
	7.1.2 Recherche en profondeur d'abord (Depth First)
	7.1.3 Recherche limitée en profondeur d'abord (Depth First)
	7.1.4 Algorithme de Dijkstra
	7.1.5 A* (A-Star)
	7.1.6 Recherche du meilleur d'abord (Best First)
	7.1.7 Profondeur itératif (Iterative Deepening)

	7.2 Algorithmes forward dérivés du backtracking
	7.2.1 Le Forward Checking
	7.2.2 Algorithmes hybrides du Forward Checking (FC-BJ et FC-CBJ)

	8 Backward Algorithms
	8.1 Simple Backtracking (BT)
	8.2 Backjumping (backtracking intelligent)
	8.3 Conflict-Directed Backjumping (CBJ)
	8.4 Graph-Based Backjumping (GBJ)
	8.5 Backmarking
	8.6 Algorithmes hybrides du Backmarking (BM-BJ, BM-CBJ, BM-GBJ, BMJ2, BM-CBJ...)

	9 Algorithmes d'élagage
	9.1 Algorithmes de la théorie des jeux
	9.2 A*
	9.3 Programmation linéaire
	9.3.1 L'algorithme du Simplexe

	Bibliographie

